Abstract

Sustained annular pressure caused by tubing leakage seriously threatens the safe production of deep gas wells. Therefore, it is necessary to fully understand the characteristics of sustained annular pressure and find potential methods to reduce risk. However, most models are about annular pressure caused by thermal expansion and cement integrity failure. Therefore, this paper establishes a model based on the energy conservation law, gas pressure–volume–temperature (PVT) properties, and volume consistency law, to study sustained annular pressure caused by tubing leakage. The results indicate that the pressure and gas volume in tubing-casing annulus increase simultaneously and gradually slow down after tubing leakage happens. The decrease of bottom-hole pressure can reduce the risk of annular pressure, which can be realized by a downhole choke. Other measures can also control the rising speed of annular pressure, including enhancement of production rate, increase of the initial length of the gas column and annular liquid with high compressibility, but the impact of formation energy and annular gas volume should be considered. Sustained annular pressure caused by shallow leaking point has a faster rising speed, longer rising period, and higher pressure value. Large leaking point leads to a remarkable increase of leaking rate and pressure rising speed. The integrity of the upper tubing string should be strengthened.

References

1.
Zhang
,
B.
,
Zhang
,
H.
,
Long
,
Y.
,
Fang
,
K.
,
Xu
,
N.
,
Li
,
Z.
, and
Liang
,
Y.
,
2020
, “
Economic and Environmental Co-Benefit of Natural Gas Supply Chain Considering the Risk Attitude of Designers
,”
J. Cleaner Prod.
,
272
, p.
122681
.
2.
Zhang
,
L.
,
Kou
,
Z.
,
Wang
,
H.
,
Zhao
,
Y.
,
Dejam
,
M.
,
Guo
,
J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
, pp.
104
120
.
3.
Al-Hussain
,
A. M.
,
Hossain
,
M. E.
,
Abdulraheem
,
A.
, and
Gajbhiye
,
R.
,
2015
, “
An Integrated Approach for Downhole Leak Detection
,”
SPE Saudi Arabia Section Annual Technical Symposium and Exhibition
,
Al-Khobar, Saudi Arabia
,
Apr. 21–23
, pp.
1
13
.
4.
Mohamed
,
I. M.
,
Panchal
,
Y.
,
Mounir
,
N.
,
Woolsey
,
G.
,
Abou-Sayed
,
O. A.
, and
Abou-Sayed
,
A. S.
,
2021
, “
Evaluation of Annulus Pressure Buildup During Injection Operations
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073002
.
5.
IJulian
,
J. Y.
,
Duerr
,
A. D.
,
Jackson
,
J. C.
, and
Johns
,
J. E.
,
2013
, “
Identifying Small Leaks With Ultrasonic Leak Detection-Lessons Learned in Alaska
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 2
, pp.
1
14
.
6.
Wisen
,
J.
,
Chesnaux
,
R.
,
Werring
,
J.
,
Wendling
,
G.
,
Baudron
,
P.
, and
Barbecot
,
F.
,
2020
, “
A Portrait of Wellbore Leakage in Northeastern British Columbia, Canada
,”
Proc. Natl. Acad. Sci.
,
117
(
2
), pp.
913
922
.
7.
Zhang
,
B.
,
Guan
,
Z.
,
Lu
,
N.
,
Hasan
,
A. R.
,
Wang
,
Q.
, and
Xu
,
B.
,
2019
, “
Trapped Annular Pressure Caused by Thermal Expansion in Oil and Gas Wells: A Review of Prediction Approaches, Risk Assessment and Mitigation Strategies
,”
J. Pet. Sci. Eng.
,
172
, pp.
70
82
.
8.
Zeng
,
Y.
,
Liu
,
R.
,
Li
,
X.
,
Zhou
,
S.
,
Tao
,
Q.
, and
Lu
,
P.
,
2019
, “
Cement Sheath Sealing Integrity Evaluation Under Cyclic Loading Using Large-Scale Sealing Evaluation Equipment for Complex Subsurface Settings
,”
J. Pet. Sci. Eng.
,
176
, pp.
811
820
.
9.
Kjøller
,
C.
,
Torsæter
,
M.
,
Lavrov
,
A.
, and
Frykman
,
P.
,
2016
, “
Novel Experimental/Numerical Approach to Evaluate the Permeability of Cement-Caprock Systems
,”
Int. J. Greenhouse Gas Control
,
45
, pp.
86
93
.
10.
Al Ramadan
,
M.
,
Salehi
,
S.
,
Kwatia
,
G.
,
Ezeakacha
,
C.
, and
Teodoriu
,
C.
,
2019
, “
Experimental Investigation of Well Integrity: Annular Gas Migration in Cement Column
,”
J. Pet. Sci. Eng.
,
179
, pp.
126
135
.
11.
Zhu
,
H.
,
Lin
,
Y.
,
Zeng
,
D.
,
Zhang
,
D.
, and
Wang
,
F.
,
2012
, “
Calculation Analysis of Sustained Casing Pressure in Gas Wells
,”
Pet. Sci.
,
9
(
1
), pp.
66
74
.
12.
Xu
,
R.
, and
Wojtanowicz
,
A. K.
,
2017
, “
Pressure Buildup Test Analysis in Wells With Sustained Casing Pressure
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
608
620
.
13.
Zhang
,
B.
,
Guan
,
Z.
,
Zhang
,
Q.
, and
Han
,
D.
,
2015
, “
Prediction of Sustained Annular Pressure and the Pressure Control Measures for High Pressure Gas Wells
,”
Pet. Explor. Dev.
,
42
(
4
), pp.
616
619
.
14.
Bu
,
Y.
,
Hou
,
X.
,
Wang
,
C.
, and
Du
,
J.
,
2018
, “
Effect of Colloidal Nanosilica on Early-Age Compressive Strength of Oil Well Cement Stone at Low Temperature
,”
Constr. Build. Mater.
,
171
, pp.
690
696
.
15.
Liu
,
K.
,
Gao
,
D.
,
Yang
,
J.
, and
Wang
,
Z.
,
2019
, “
Effect of Expandable Cement on Increasing Sealing Ability of Cement Sheath in Shale Gas Wells
,”
J. Pet. Sci. Eng.
,
176
, pp.
850
861
.
16.
Zhang
,
B.
,
Guan
,
Z.
,
Wang
,
Q.
,
Xuan
,
L.
,
Liu
,
Y.
, and
Sheng
,
Y.
,
2016
, “
Appropriate Completion to Prevent Potential Damage of Annular Pressure Buildup in Deepwater Wells
,”
Paper Presented at the IADC/SPE Asia Pacific Drilling Technology Conference
,
Singapore
, SPE 180542.
17.
Mwang’ande
,
A. W.
,
Liao
,
H.
, and
Zeng
,
L.
,
2019
, “
Mitigation of Annulus Pressure Buildup in Offshore Gas Wells by Determination of Top of Cement
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102901
.
18.
Li
,
C.
,
Guan
,
Z.
,
Zhang
,
B.
,
Wang
,
Q.
,
Xie
,
H.
,
Yan
,
Y.
, and
Han
,
C.
,
2021
, “
Failure and Mitigation Study of Packer in the Deepwater HTHP Gas Well Considering the Temperature-Pressure Effect During Well Completion Test
,”
Case Stud. Therm. Eng.
,
26
, p.
101021
.
19.
Hasan
,
A. R.
,
Kabir
,
C. S.
, and
Sarica
,
C.
,
2002
,
Fluid Flow and Heat Transfer in Wellbores
,
Society of Petroleum Engineers
,
Richardson, TX
.
20.
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
2012
, “
Wellbore Heat-Transfer Modeling and Applications
,”
J. Pet. Sci. Eng.
,
86
, pp.
127
136
.
21.
Ferreira
,
M. V. D.
,
Hafemann
,
T. E.
,
Barbosa
,
J. R.
,
da Silva
,
A. K.
, and
Hasan
,
R.
,
2017
, “
A Numerical Study on the Thermal Behavior of Wellbores
,”
SPE Prod. Oper.
,
32
(
4
), pp.
564
574
.
22.
Mao
,
L.
,
Liu
,
Q.
,
Nie
,
K.
, and
Wang
,
G.
,
2016
, “
Temperature Prediction Model of Gas Wells for Deep-Water Production in South China Sea
,”
J. Nat. Gas Sci. Eng.
,
36
, pp.
708
718
.
23.
Bo
,
Z.
,
Zhichuan
,
G.
, and
Qi
,
Z.
,
2015
, “
Prediction and Analysis on Annular Pressure of Deepwater Well in the Production Stage
,”
Acta Pet. Sin.
,
36
(
8
), pp.
1012
1017
.
24.
Yin
,
F.
, and
Gao
,
D.
,
2015
, “
Prediction of Sustained Production Casing Pressure and Casing Design for Shale Gas Horizontal Wells
,”
J. Nat. Gas Sci. Eng.
,
25
, pp.
159
165
.
25.
Yang
,
X.
,
Qiu
,
K.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Xian
,
C.
,
2018
, “
Analyzing Unexpected Sanding Issues in the High-Pressure/High-Temperature, Tight-Sandstone Keshen Gas Reservoir, Western China
,”
SPE Drill. Completion
,
33
(
3
), pp.
192
208
.
You do not currently have access to this content.