Abstract

A recent increase in the integration of renewable energy systems in existing power grids along with a lack of integrated dispatch models has led to waste in power produced. This paper presents a mixed-integer nonlinear optimization model for hybrid renewable-generator-plus-battery systems, with the objective of maximizing long-term profit. Prior studies have revealed that both high and low state of charge (SOC) of the battery is detrimental to its lifetime and results in reduced battery capacity over time. In addition, increased number of cycles of charge and discharge also causes capacity reduction. This paper models these two factors with a constraint relating capacity loss to the SOC and number of cycles completed by the battery. Loss in capacity is penalized in the objective function of the optimization model, thereby disincentivizing high and low SOCs and frequent cycling. A rolling time horizon optimization approach is used to overcome the computational difficulties of achieving global optimality within a long-term time horizon. By incorporating battery degradation, the model is capable of maximizing the profits from the power dispatch to the grid while also maximizing the life of the battery. This paper exercises the model within a case study using a sample photovoltaic system generation time series that considers multiple battery capacities. The results indicate that the optimal battery lifetime is extended in comparison to conventional models that ignore battery degradation in dispatch decisions. Finally, we analyze the relationship between battery operational decisions and the resultant capacity fade.

References

1.
Denholm
,
P.
,
O’Connell
,
M.
,
Brinkman
,
G.
, and
Jorgenson
,
J.
,
2015
,
Overgeneration From Solar Energy in California. A Field Guide To The Duck Chart
. Technical Report,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
2.
Denholm
,
P.
,
Margolis
,
R.
, and
Milford
,
J.
,
2008
,
Production Cost Modeling for High Levels of Photovoltaics Penetration
. Technical Report,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
3.
Deng
,
X.
,
Deng
,
Z.
,
Song
,
Z.
,
Lin
,
X.
, and
Hu
,
X.
,
2021
, “
Economic Control for a Residential Photovoltaic-Battery System by Combining Stochastic Model Predictive Control and Improved Correction Strategy
,”
ASME J. Energy. Res. Technol.
,
144
(
5
), p.
054501
.
4.
Schoenung
,
S.
,
2011
,
Energy Storage Systems Cost Update
,
SAND2011-2730
,
606
.
5.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mater.
,
22
(
3
), pp.
587
603
.
6.
Ouyang
,
M.
,
Feng
,
X.
,
Han
,
X.
,
Lu
,
L.
,
Li
,
Z.
, and
He
,
X.
,
2016
, “
A Dynamic Capacity Degradation Model and Its Applications Considering Varying Load for a Large Format Li-Ion Battery
,”
Appl. Energy.
,
165
, pp.
48
59
.
7.
Barré
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S.
,
Gérard
,
M.
,
Suard
,
F.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
(
9
), pp.
680
689
.
8.
Palacín
,
M. R.
, and
de Guibert
,
A.
,
2016
, “
Why Do Batteries Fail?
,”
Science
,
351
(
6273
).
9.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
(
3
), pp.
272
288
.
10.
Kassem
,
M.
,
Bernard
,
J.
,
Revel
,
R.
,
Pelissier
,
S.
,
Duclaud
,
F.
, and
Delacourt
,
C.
,
2012
, “
Calendar Aging of a Graphite/lifepo4 Cell
,”
J. Power Sources
,
208
(
4
), pp.
296
305
.
11.
Belt
,
J.
,
Utgikar
,
V.
, and
Bloom
,
I.
,
2011
, “
Calendar and Phev Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered-Oxide Cathodes
,”
J. Power Sources
,
196
(
23
), pp.
10213
10221
.
12.
Ploehn
,
H. J.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2004
, “
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
151
(
3
), p.
A456
.
13.
Laresgoiti
,
I.
,
Käbitz
,
S.
,
Ecker
,
M.
, and
Sauer
,
D. U.
,
2015
, “
Modeling Mechanical Degradation in Lithium Ion Batteries During Cycling: Solid Electrolyte Interphase Fracture
,”
J. Power Sources
,
300
(
3
), pp.
112
122
.
14.
Xu
,
B.
,
Oudalov
,
A.
,
Ulbig
,
A.
,
Andersson
,
G.
, and
Kirschen
,
D. S.
,
2016
, “
Modeling of Lithium-ion Battery Degradation for Cell Life Assessment
,”
IEEE Trans. Smart Grid
,
9
(
2
), pp.
1131
1140
.
15.
Millner
,
A.
,
2010
, “
Modeling Lithium Ion Battery Degradation in Electric Vehicles
,”
2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply
,
Waltham, MA
,
Sept. 27–29
, IEEE, pp.
349
356
.
16.
Ghorbanzadeh
,
M.
,
Astaneh
,
M.
, and
Golzar
,
F.
,
2019
, “
Long-Term Degradation Based Analysis for Lithium-Ion Batteries in Off-Grid Wind-Battery Renewable Energy Systems
,”
Energy
,
166
(
Part 1
), pp.
1194
1206
.
17.
Fortenbacher
,
P.
,
Mathieu
,
J. L.
, and
Andersson
,
G.
,
2014
, “
Modeling, Identification, and Optimal Control of Batteries for Power System Applications
,”
2014 Power Systems Computation Conference
,
Wroclaw, Poland
,
Aug. 18–22
, IEEE, pp.
1
7
.
18.
Smith
,
K.
,
Wood
,
E.
,
Santhanagopalan
,
S.
,
Kim
,
G.
,
Neubauer
,
J.
, and
Pesaran
,
A.
,
2014
,
Models For Battery Reliability and Lifetime
. Technical Report,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
19.
Hossain Ahmed
,
S.
,
Kang
,
X.
, and
Bade Shrestha
,
S.
,
2015
, “
Effects of Temperature on Internal Resistances of Lithium-Ion Batteries
,”
ASME J. Energy. Resour. Technol.
,
137
(
3
), p.
031901
.
20.
Ecker
,
M.
,
Nieto
,
N.
,
Käbitz
,
S.
,
Schmalstieg
,
J.
,
Blanke
,
H.
,
Warnecke
,
A.
, and
Sauer
,
D. U.
,
2014
, “
Calendar and Cycle Life Study of Li (nimnco) O2-Based 18650 Lithium-Ion Batteries
,”
J. Power Sources
,
248
(
9
), pp.
839
851
.
21.
Wikner
,
E.
, and
Thiringer
,
T.
,
2018
, “
Extending Battery Lifetime by Avoiding High Soc
,”
Appl. Sci.
,
8
(
10
), p.
1825
.
22.
Guena
,
T.
, and
Leblanc
,
P.
,
2006
, “
How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries
,”
NTELEC 06-Twenty-Eighth International Telecommunications Energy Conference
,
Providence, RI
,
Sept. 10–14
, IEEE, pp.
1
8
.
23.
Zheng
,
Y.
,
He
,
Y.-B.
,
Qian
,
K.
,
Li
,
B.
,
Wang
,
X.
,
Li
,
J.
,
Miao
,
C.
, and
Kang
,
F.
,
2015
, “
Effects of State of Charge on the Degradation of Lifepo4/Graphite Batteries During Accelerated Storage Test
,”
J. Alloys. Compd.
,
639
, pp.
406
414
.
24.
Bordin
,
C.
,
Anuta
,
H. O.
,
Crossland
,
A.
,
Gutierrez
,
I. L.
,
Dent
,
C. J.
, and
Vigo
,
D.
,
2017
, “
A Linear Programming Approach for Battery Degradation Analysis and Optimization in Offgrid Power Systems With Solar Energy Integration
,”
Renewable Energy
,
101
(
1
), pp.
417
430
.
25.
Goebel
,
C.
,
Hesse
,
H.
,
Schimpe
,
M.
,
Jossen
,
A.
, and
Jacobsen
,
H.-A.
,
2016
, “
Model-Based Dispatch Strategies for Lithium-Ion Battery Energy Storage Applied to Pay-As-Bid Markets for Secondary Reserve
,”
IEEE Trans. Power Syst.
,
32
(
4
), pp.
2724
2734
.
26.
Goodall
,
G.
,
Scioletti
,
M.
,
Zolan
,
A.
,
Suthar
,
B.
,
Newman
,
A.
, and
Kohl
,
P.
,
2019
, “
Optimal Design and Dispatch of a Hybrid Microgrid System Capturing Battery Fade
,”
Optim. Eng.
,
20
(
1
), pp.
179
213
.
27.
Wang
,
J.
,
Liu
,
P.
,
Hicks-Garner
,
J.
,
Sherman
,
E.
,
Soukiazian
,
S.
,
Verbrugge
,
M.
,
Tataria
,
H.
,
Musser
,
J.
, and
Finamore
,
P.
,
2011
, “
Cycle-Life Model for Graphite-Lifepo4 Cells
,”
J. Power Sources
,
196
(
8
), pp.
3942
3948
.
28.
Freeman
,
J. M.
,
DiOrio
,
N. A.
,
Blair
,
N. J.
,
Neises
,
T. W.
,
Wagner
,
M. J.
,
Gilman
,
P.
, and
Janzou
,
S.
,
2018
,
System Advisor Model (SAM) General Description (Version 2017.9.5)
. Technical Report,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
29.
Sengupta
,
M.
,
Xie
,
Y.
,
Lopez
,
A.
,
Habte
,
A.
,
Maclaurin
,
G.
, and
Shelby
,
J.
,
2018
, “
The National Solar Radiation Data Base (NSRDB)
,”
Renewable. Sustainable. Energy. Rev.
,
89
, pp.
51
60
.
30.
Dragičević
,
T.
,
Pandžić
,
H.
,
Škrlec
,
D.
,
Kuzle
,
I.
,
Guerrero
,
J. M.
, and
Kirschen
,
D. S.
,
2014
, “
Capacity Optimization of Renewable Energy Sources and Battery Storage in An Autonomous Telecommunication Facility
,”
IEEE Trans. Sustainable Energy
,
5
(
4
), pp.
1367
1378
.
31.
Sangwongwanich
,
A.
,
Yang
,
Y.
,
Sera
,
D.
, and
Blaabjerg
,
F.
,
2017
, “
Lifetime Evaluation of Grid-Connected Pv Inverters Considering Panel Degradation Rates and Installation Sites
,”
IEEE Trans. Power Electron.
,
33
(
2
), pp.
1225
1236
.
32.
Musallam
,
M.
, and
Johnson
,
C. M.
,
2012
, “
An Efficient Implementation of the Rainflow Counting Algorithm for Life Consumption Estimation
,”
IEEE Trans. Reliab.
,
61
(
4
), pp.
978
986
.
33.
Rosewater
,
D.
,
Headley
,
A.
,
Mier
,
F. A.
, and
Santoso
,
S.
,
2019
, “
Optimal Control of a Battery Energy Storage System with a Charge-Temperature-Health Model
,”
2019 IEEE Power & Energy Society General Meeting (PESGM)
,
Atlanta, GA
,
Aug. 4–8
, IEEE, pp.
1
5
.
34.
Marquant
,
J. F.
,
Evins
,
R.
, and
Carmeliet
,
J.
,
2015
, “
Reducing Computation Time With a Rolling Horizon Approach Applied to a Milp Formulation of Multiple Urban Energy Hub System
,”
Procedia Comput. Sci.
,
51
(
10
), pp.
2137
2146
.
35.
Glomb
,
L.
,
Liers
,
F.
, and
Rösel
,
F.
,
2021
, “
A Rolling-horizon Approach for Multi-period Optimization
,”
Eur. J. Oper. Res.
You do not currently have access to this content.