Abstract

Continued social and mobility development has caused a sharp increase in the number of waste tires, increased environmental pollution, and waste of limited resources. Agricultural residues as a bioresource, which has drawn increased attention in recent years. The thermochemical conversion of waste tires and agricultural residues and their mixtures offers important prospects for scientific development, which can provide energy security and a much reduced environmental footprint. In this paper, pyrolysis of waste tires and its co-pyrolysis with maize stalk, wheat straw, cotton stalk, rape straw, or peanut shell agricultural residues, in mass ratios of 1:1 were investigated at different heating rate using thermogravimetric analysis. The kinetic parameters were calculated using Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) kinetic models at heating rates of 20, 30, and 50 °C/min. The synergistic effect between waste tires and agricultural residues was explored by calculating the deviation between the experimental and calculated values. The results showed the presence of a synergistic effect between the co-pyrolysis of waste tires and the residual agricultural residues. In the kinetic analysis, activation energies of waste tires, agricultural residues, and their mixtures were calculated using the two models. The reaction followed a multistage reaction mechanism. The differential thermogravimetry behavior of the mixture was similar to the weighted aggregate results of the waste tire and agricultural waste samples, pyrolyzed separately. These results provide some insights into the combined treatment of waste tires and agricultural waste residues.

References

1.
Gunasee
,
S. D.
,
Danon
,
B.
,
Görgens
,
J. F.
, and
Mohee
,
R.
,
2017
, “
Co-Pyrolysis of LDPE and Cellulose: Synergies During Devolatilization and Condensation
,”
J. Anal. Appl. Pyrolysis
,
126
(
1
), pp.
307
314
.
2.
Rafique
,
M. M.
, and
Rehman
,
S.
,
2017
, “
National Energy Scenario of Pakistan—Current Status, Future Alternatives, and Institutional Infrastructure: An Overview
,”
Renewable Sustainable Energy Rev.
,
69
(
1
), pp.
156
167
.
3.
Martínez
,
J. D.
,
Puy
,
N.
,
Murillo
,
R.
,
García
,
T.
,
Navarro
,
M. V.
, and
Mastral
,
A. M.
,
2013
, “
Waste Tyre Pyrolysis—A Review
,”
Renewable Sustainable Energy Rev.
,
23
(
1
), pp.
179
213
.
4.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2022
, “
Acid and Alkali Pretreatment Effects on CO2-Assisted Gasification of Pinewood
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022306
.
5.
Iisa
,
K.
,
Robichaud
,
D. J.
,
Watson
,
M. J.
,
ten Dam
,
J.
,
Dutta
,
A.
,
Mukarakate
,
C.
,
Kim
,
S.
,
Nimlos
,
M. R.
, and
Baldwin
,
R. M.
,
2018
, “
Improving Biomass Pyrolysis Economics by Integrating Vapor and Liquid Phase Upgrading
,”
Green Chem.
,
20
(
3
), pp.
567
582
.
6.
Hao
,
N.
,
Bezerra
,
T. L.
,
Wu
,
Q.
,
Ben
,
H.
,
Sun
,
Q.
,
Adhikari
,
S.
, and
Ragauskas
,
A. J.
,
2017
, “
Effect of Autohydrolysis Pretreatment on Biomass Structure and the Resulting Bio-Oil From a Pyrolysis Process
,”
Fuel
,
206
(
1
), pp.
494
503
.
7.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
8.
Wang
,
J.
,
Zhong
,
Z.
,
Ding
,
K.
,
Li
,
M.
,
Hao
,
N.
,
Meng
,
X.
,
Ruan
,
R.
, and
Ragauskas
,
A. J.
,
2019
, “
Catalytic Fast Co-Pyrolysis of Bamboo Sawdust and Waste Tire Using a Tandem Reactor With Cascade Bubbling Fluidized Bed and Fixed Bed System
,”
Energy Convers. Manage.
,
180
(
1
), pp.
60
71
.
9.
Hendriks
,
A. T. W. M.
, and
Zeeman
,
G.
,
2009
, “
Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass
,”
Bioresour. Technol.
,
100
(
1
), pp.
10
18
.
10.
Borówka
,
G.
,
Bytnar
,
K.
,
Krzak
,
M.
,
Walendziewski
,
J.
, and
Zmuda
,
W. A.
,
2019
, “
Physicochemical Properties of Fuel Blends Composed of Heavy Fuel Oil and Tire-Derived Pyrolytic Oils
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042207
.
11.
Burra
,
K. R. G.
,
Fernández Hernández
,
I.
,
Castaldi
,
M. J.
,
Goff
,
S.
, and
Gupta
,
A. K.
,
2023
, “
Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
021701
.
12.
Formela
,
K.
,
2021
, “
Sustainable Development of Waste Tires Recycling Technologies—Recent Advances, Challenges and Future Trends
,”
Adv. Industrial Eng. Polym. Res.
,
4
(
3
), pp.
209
222
.
13.
Wang
,
Z.
,
Burra
,
K. G.
,
Zhang
,
M.
,
Li
,
X.
,
Policella
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
Co-Pyrolysis of Waste Tire and Pine Bark for Syngas and Char Production
,”
Fuel
,
274
(
C
), p.
117878
.
14.
Oboirien
,
B. O.
, and
North
,
B. C.
,
2017
, “
A Review of Waste Tyre Gasification
,”
J. Environ. Chem. Eng.
,
5
(
5
), pp.
5169
5178
.
15.
Wang
,
Z.
,
Chen
,
Y.
,
Chen
,
G.
,
Sun
,
T.
,
Zhang
,
M.
,
Wang
,
Q.
,
Wu
,
M.
, et al
,
2023
, “
Products Distribution and Synergistic Effects Analysis During Co-Pyrolysis of Agricultural Residues and Waste Tire Using Gas Chromatography/Mass Spectrometry
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
081501
.
16.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Characteristics From Catalytic Gasification of Polystyrene and Pinewood in CO2 Atmosphere
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052304
.
17.
Xu
,
F.
,
Wang
,
B.
,
Yang
,
D.
,
Ming
,
X.
,
Jiang
,
Y.
,
Hao
,
J.
,
Qiao
,
Y.
, and
Tian
,
Y.
,
2018
, “
TG-FTIR and Py-GC/MS Study on Pyrolysis Mechanism and Products Distribution of Waste Bicycle Tire
,”
Energy Convers. Manage.
,
175
(
1
), pp.
288
297
.
18.
Dhyani
,
V.
, and
Bhaskar
,
T.
,
2018
, “
A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass
,”
Renewable Energy
,
129
(
1
), pp.
695
716
.
19.
Hassan
,
H.
,
Lim
,
J. K.
, and
Hameed
,
B. H.
,
2016
, “
Recent Progress on Biomass Co-Pyrolysis Conversion Into High-Quality Bio-Oil
,”
Bioresour. Technol.
,
221
(
1
), pp.
645
655
.
20.
Abbasi
,
T.
, and
Abbasi
,
S. A.
,
2010
, “
Biomass Energy and the Environmental Impacts Associated With Its Production and Utilization
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
919
937
.
21.
Karimi
,
E.
,
Teixeira
,
I. F.
,
Gomez
,
A.
,
De Resende
,
E.
,
Gissane
,
C.
,
Leitch
,
J.
,
Jollet
,
V.
, et al
,
2014
, “
Synergistic Co-Processing of an Acidic Hardwood Derived Pyrolysis Bio-Oil With Alkaline Red Mud Bauxite Mining Waste as a Sacrificial Upgrading Catalyst
,”
Appl. Catal., B
,
145
(
1
), pp.
187
196
.
22.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-Pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
23.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
24.
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2020
, “
Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011401
.
25.
Shah
,
S. A. Y.
,
Zeeshan
,
M.
,
Farooq
,
M. Z.
,
Ahmed
,
N.
, and
Iqbal
,
N.
,
2019
, “
Co-Pyrolysis of Cotton Stalk and Waste Tire With a Focus on Liquid Yield Quantity and Quality
,”
Renewable Energy
,
130
(
1
), pp.
238
244
.
26.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
.
27.
Mettler
,
M. S.
,
Vlachos
,
D. G.
, and
Dauenhauer
,
P. J.
,
2012
, “
Top Ten Fundamental Challenges of Biomass Pyrolysis for Biofuels
,”
Energy Environ. Sci.
,
5
(
7
), p.
7797
.
28.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel
,
257
(
1
), p.
116025
.
29.
Czajczyńska
,
D.
,
Krzyżyńska
,
R.
,
Jouhara
,
H.
, and
Spencer
,
N.
,
2017
, “
Use of Pyrolytic Gas From Waste Tire as a Fuel: A Review
,”
Energy
,
134
(
1
), pp.
1121
1131
.
30.
Toledo
,
M.
,
Ripoll
,
N.
,
Céspedes
,
J.
,
Zbogar-Rasic
,
A.
,
Fedorova
,
N.
,
Jovicic
,
V.
, and
Delgado
,
A.
,
2018
, “
Syngas Production From Waste Tires Using a Hybrid Filtration Reactor Under Different Gasifier Agents
,”
Energy Convers. Manage.
,
172
(
1
), pp.
381
390
.
31.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2017
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032203
.
32.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
Appl. Energy
,
88
(
1
), pp.
165
174
.
33.
Burra
,
K. R. G.
,
Selim
,
O. M.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2023
, “
Synergy in Syngas Yield From Co-Pyrolysis of Cow and Chicken Manures
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), pp.
1
22
.
34.
Hossain
,
M. S.
,
Islam
,
M. R.
,
Rahman
,
M. S.
,
Kader
,
M. A.
, and
Haniu
,
H.
,
2017
, “
Biofuel From Co-Pyrolysis of Solid Tire Waste and Rice Husk
,”
Energy Procedia
,
110
(
1
), pp.
453
458
.
35.
Wang
,
L.
,
Chai
,
M.
,
Liu
,
R.
, and
Cai
,
J.
,
2018
, “
Synergetic Effects During Co-Pyrolysis of Biomass and Waste Tire: A Study on Product Distribution and Reaction Kinetics
,”
Bioresour. Technol.
,
268
(
1
), pp.
363
370
.
36.
Uçar
,
S.
, and
Karagöz
,
S.
,
2014
, “
Co-Pyrolysis of Pine Nut Shells With Scrap Tires
,”
Fuel
,
137
(
1
), pp.
85
93
.
37.
Alvarez
,
J.
,
Amutio
,
M.
,
Lopez
,
G.
,
Santamaria
,
L.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2019
, “
Improving Bio-Oil Properties Through the Fast Co-Pyrolysis of Lignocellulosic Biomass and Waste Tyres
,”
Waste Manage.
,
85
(
1
), pp.
385
395
.
38.
Abnisa
,
F.
, and
Wan Daud
,
W. M. A.
,
2015
, “
Optimization of Fuel Recovery Through the Stepwise Co-Pyrolysis of Palm Shell and Scrap Tire
,”
Energy Convers. Manage.
,
99
(
1
), pp.
334
345
.
39.
Shi
,
S.
,
Zhou
,
X.
,
Chen
,
W.
,
Wang
,
X.
,
Nguyen
,
T.
, and
Chen
,
M.
,
2017
, “
Thermal and Kinetic Behaviors of Fallen Leaves and Waste Tires Using Thermogravimetric Analysis
,”
BioResources
,
12
(
3
), pp.
4707
4721
.
40.
Lahijani
,
P.
,
Zainal
,
Z. A.
,
Mohamed
,
A. R.
, and
Mohammadi
,
M.
,
2013
, “
Co-Gasification of Tire and Biomass for Enhancement of Tire-Char Reactivity in CO2 Gasification Process
,”
Bioresour. Technol.
,
138
(
1
), pp.
124
130
.
41.
Cai
,
H.
,
Liu
,
J.
,
Xie
,
W.
,
Kuo
,
J.
,
Buyukada
,
M.
, and
Evrendilek
,
F.
,
2019
, “
Pyrolytic Kinetics, Reaction Mechanisms and Products of Waste Tea via TG-FTIR and Py-GC/MS
,”
Energy Convers. Manage.
,
184
(
1
), pp.
436
447
.
42.
Yang
,
R. T.
, and
Steinberg
,
M.
,
1976
, “
Reaction Kinetics and Differential Thermal Analysis
,”
J. Phys. Chem.
,
80
(
9
), pp.
965
968
.
43.
Akahira
,
T.
, and
Sunose
,
T.
,
1971
, “
Method of Determining Activation Deterioration Constant of Electrical Insulating Materials
,”
Res. Rep. Chiba Inst. Technol.
,
16
(
1
), pp.
22
31
.
44.
Merdun
,
H.
, and
Laougé
,
Z. B.
,
2021
, “
Kinetic and Thermodynamic Analyses During Co-Pyrolysis of Greenhouse Wastes and Coal by TGA
,”
Renewable Energy
,
163
(
1
), pp.
453
464
.
45.
Xie
,
W.
,
Wen
,
S.
,
Liu
,
J.
,
Xie
,
W.
,
Kuo
,
J.
,
Lu
,
X.
,
Sun
,
S.
,
Chang
,
K.
,
Buyukada
,
M.
, and
Evrendilek
,
F.
,
2018
, “
Comparative Thermogravimetric Analyses of Co-Combustion of Textile Dyeing Sludge and Sugarcane Bagasse in Carbon Dioxide/Oxygen and Nitrogen/Oxygen Atmospheres: Thermal Conversion Characteristics, Kinetics, and Thermodynamics
,”
Bioresour. Technol.
,
255
(
1
), pp.
88
95
.
46.
Wang
,
Z.
,
Wu
,
M.
,
Chen
,
G.
,
Zhang
,
M.
,
Sun
,
T.
,
Burra
,
K. G.
,
Guo
,
S.
, et al
,
2023
, “
Co-Pyrolysis Characteristics of Waste Tire and Maize Stalk Using TGA, FTIR and Py-GC/MS Analysis
,”
Fuel
,
337
(
1
), p.
127206
.
47.
Tahir
,
M. H.
,
Zhao
,
Z.
,
Ren
,
J.
,
Rasool
,
T.
, and
Naqvi
,
S. R.
,
2019
, “
Thermo-Kinetics and Gaseous Product Analysis of Banana Peel Pyrolysis for Its Bioenergy Potential
,”
Biomass Bioenergy
,
122
(
1
), pp.
193
201
.
48.
Ansah
,
E.
,
Wang
,
L.
, and
Shahbazi
,
A.
,
2016
, “
Thermogravimetric and Calorimetric Characteristics During Co-Pyrolysis of Municipal Solid Waste Components
,”
Waste Manage.
,
56
(
1
), pp.
196
206
.
49.
Policella
,
M.
,
Wang
,
Z.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Characteristics of Syngas From Pyrolysis and CO2-Assisted Gasification of Waste Tires
,”
Appl. Energy
,
254
(
1
), p.
113678
.
50.
Heydari
,
M.
,
Rahman
,
M.
, and
Gupta
,
R.
,
2015
, “
Kinetic Study and Thermal Decomposition Behavior of Lignite Coal
,”
Int. J. Chem. Eng.
,
2015
(
1
), pp.
1
9
.
You do not currently have access to this content.