Abstract

The purpose of this article is to expound recovery of low-grade heat deriving from cooling data center electronics, in order to sustain a thermodynamic cycle of the Rankine type, using cryogenic nitrogen as the working fluid. A novel conception of an energy plant is proposed and considered where these resources are available. The evaporator, built in a closed and thermally insulated vessel, is the key component. Liquid nitrogen is evaporated by means of an immersed serpentine, which provides for thermal power and produces pressurized gas. A supplementary reservoir acts as superheater, as well as buffer. The plant is completed with a turbo-expander that generates power and a pump to recirculate the fluid. A thermodynamic model is developed. A dimensioning procedure for all the subsystems is reported, while a verification analysis is made to detect the maximum pressure that can be exerted. Hence, an in-depth parametric analysis is made for two-plant layout scenarios, based on the presence (1) and absence (2) of the supplementary tank. The simulations are aimed at determining all the operating parameters of the plant, as well as the performance. The results show that pressure is beneficial for performance, presenting scenario 1 as better than scenario 2. The maximum nitrogen pressurization is 12 bar, which corresponds to an electric efficiency of 31.5%, under a thermal supply of 2.79 kW per 1 kW of net electric power produced.

References

1.
Golda
,
P.
,
Schießl
,
R.
,
Stampfer
,
B.
,
Schulze
,
V.
, and
Maas
,
U.
,
2021
, “
Experimental Determination of the Cooling Performance of Liquid Nitrogen for Machining Conditions
,”
Int. J. Heat Mass Transfer
,
164
, p.
120588
.
2.
Suszko
,
A.
, and
El-Genk
,
M. S.
,
2016
, “
Thermally Anisotropic Composite Heat Spreaders for Enhanced Thermal Management of High-Performance Microprocessors
,”
Int. J. Therm. Sci.
,
100
, pp.
213
228
.
3.
Osman
,
E. K.
,
Esbert
,
M.
,
Hanson
,
B. M.
,
Winslow
,
A. D.
,
Seli
,
E.
, and
Scott
,
R. T.
,
2020
, “
Embryo Vitrification in Super Cooled Slush Nitrogen Results in Superior Post-Thaw Survival Compared to Conventional Liquid Nitrogen: A Blinded, Randomized Controlled Trial
,”
Fertil. Steril.
,
114
(
3
), p.
38
.
4.
Kumari
,
C.
,
Kumar
,
A.
,
Sarangi
,
S. K.
, and
Thirugnanam
,
A.
,
2018
, “
An Experimental and Numerical Study on Liquid Nitrogen Spray Cooling for Cryotherapy
,”
Cryobiology
,
80
, p.
179
.
5.
Sagar
,
K. R.
,
Naik
,
H. B.
, and
Mehta
,
H. B.
,
2021
, “
Numerical Study of Liquid Nitrogen-Based Pulsating Heat Pipe for Cooling Superconductors
,”
Int. J. Refrig.
,
122
, pp.
33
46
.
6.
Shi
,
W.
,
Liu
,
H.
,
Dong
,
Z.
,
Mi
,
Z.
,
Shieh
,
S. R.
,
Sun
,
X.
, and
Liu
,
X.
,
2020
, “
High Pressure Study of Nitrogen Doped Carbon Nanotubes Using Raman Spectroscopy and Synchrotron X-Ray Diffraction
,”
Arabian J. Chem.
,
13
, pp.
3008
3016
.
7.
Cai
,
C.
,
Yang
,
Y.
,
Liu
,
J.
,
Gao
,
F.
,
Gao
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Downhole Transient Flow Field and Heat Transfer Characteristics During Drilling With Liquid Nitrogen Jet
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122902
.
8.
Du
,
M.
,
Gao
,
F.
,
Cai
,
C.
,
Su
,
S.
, and
Wang
,
Z.
,
2022
, “
Differences in Petrophysical and Mechanical Properties Between Low- and Middle-Rank Coal Subjected to Liquid Nitrogen Cooling in Coalbed Methane Mining
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042303
.
9.
Khalil
,
K. M.
,
Ahmad
,
A.
,
Mahmoud
,
S.
, and
Al-Dadah
,
R. K.
,
2017
, “
Liquid air/Nitrogen Energy Storage and Power Generation System for Micro-Grid Applications
,”
J. Cleaner Prod.
,
164
, pp.
606
617
.
10.
Feifei
,
B.
, and
Zhang
,
Z.
,
2008
, “
Integration of Low-Level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization
,”
Chin. J. Chem. Eng.
,
16
(
1
), pp.
95
99
.
11.
Guizzi
,
G. L.
,
Manno
,
M.
,
Tolomei
,
L. M.
, and
Vitali
,
R. M.
,
2015
, “
Thermodynamic Analysis of a Liquid Air Energy Storage System
,”
Energy
,
93
, pp.
1639
1647
.
12.
Li
,
Y.
,
Wang
,
X.
, and
Ding
,
Y.
,
2013
, “
A Cryogen-Based Peak-Shaving Technology: Systematic Approach and Techno-Economic Analysis
,”
Int. J. Energy Res.
,
37
(
6
), pp.
547
557
.
13.
Ahmad
,
A.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
Liquid Air Utilization in Air Conditioning and Power Generating in a Commercial Building
,”
J. Cleaner Prod.
,
149
, pp.
773
783
.
14.
Morgan
,
R.
,
Nelmes
,
S.
,
Gibson
,
E.
, and
Brett
,
G.
,
2015
, “
Liquid Air Energy Storage, Analysis and First Results From a Pilot Scale Demonstration Plant
,”
Appl. Energy
,
137
, pp.
845
853
.
15.
Du
,
Y. P.
, and
Ding
,
Y. L.
,
2016
, “
Feasibility of Small-Scale Cold Energy Storage (CES) Through Carbon Dioxide Based Rankine Cycle
,”
J. Energy Storage
,
6
, pp.
40
49
.
16.
Sohrabi
,
A.
, and
Behbahaninia
,
A.
,
2022
, “
Conventional and Advanced Exergy and Exergoeconomic Assessment of an Optimized System Consisting of Kalina and Organic Rankine Cycles for Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112103
.
17.
Lonis
,
F.
,
Luo
,
Y.
,
Andresen
,
J.
, and
Maroto-Valer
,
M.
,
2017
, “
Capture of Gold Energy From Liquid Nitrogen Using a Blazer Plate Heat Exchanger
,”
Energy Procedia
,
158
, pp.
5622
5628
.
18.
Li
,
Y.
,
Chen
,
H.
,
Zhang
,
X.
,
Tan
,
C.
, and
Ding
,
Y.
,
2010
, “
Renewable Energy Carriers: Hydrogen or Liquid air/Nitrogen?
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
1985
1990
.
19.
Ebrahimi
,
B.
,
Ghorbani
,
H.
,
Lohrasbi
,
M.
, and
Ziabasharhagh
,
M.
,
2020
, “
Novel Integrated Structure Using Solar Parabolic Dish Collectors for Liquid Nitrogen Production on Offshore Gas Platforms (Exergy and Economic Analysis)
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100606
.
20.
Xu
,
B.
,
Feng
,
J.
,
Wan
,
F.
,
Zhang
,
D.
,
Shen
,
X.
, and
Zhang
,
W.
,
2020
, “
Numerical Investigation of Modified Cavitation Model With Thermodynamic Effect in Water and Liquid Nitrogen
,”
Cryogenics
,
106
, p.
103049
.
21.
Delov
,
M. I.
,
Kuzmenkov
,
D. M.
,
Lavrukhin
,
A. A.
, and
Kutsenko
,
K. V.
,
2020
, “
Transient Boiling Crisis in Liquid Nitrogen. Influence of Heater Size and Heating Rate
,”
Int. J. Heat Mass Transfer
,
157
, p.
119941
.
22.
Zhu
,
S.
,
Li
,
Y.
,
Zhi
,
X.
,
Gu
,
C.
,
Tang
,
Y.
, and
Qiu
,
L.
,
2020
, “
Numerical Analysis of Nitrogen Condensation Heat Transfer Enhancement With Liquid Film Fluctuation at Cryogenic Temperature
,”
Int. J. Heat Mass Transfer
,
149
, p.
119151
.
23.
Roge
,
N. H.
,
Khankari
,
G.
, and
Karmakar
,
S.
,
2022
, “
Waste Heat Recovery From Fly Ash of 210 MW Coal Fired Power Plant Using Organic Rankine Cycle
,”
ASME. J. Energy Resour. Technol.
,
144
(
8
), p.
082107
.
24.
Haq
,
M. Z.
,
2021
, “
Optimization of an Organic Rankine Cycle-Based Waste Heat Recovery System Using a Novel Target-Temperature-Line Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092101
.
25.
Yan
,
D.
,
Yang
,
F.
,
Zhang
,
H.
,
Xu
,
Y.
,
Wang
,
Y.
,
Li
,
J.
, and
Ge
,
Z.
,
2022
, “
How to Quickly Evaluate the Thermodynamic Performance and Identify the Optimal Heat Source Temperature for Organic Rankine Cycles?
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112106
.
26.
Fischer
,
J.
,
2011
, “
Comparison of Trilateral Cycles and Organic Rankine Cycles
,”
Energy
,
36
(
10
), pp.
6208
6219
.
27.
Li
,
Z.
,
Lu
,
Y.
,
Huang
,
Y.
,
Qian
,
G.
,
Chen
,
F.
,
Yu
,
X.
, and
Roskilly
,
A.
,
2017
, “
Comparison Study of Trilateral Rankine Cycle, Organic Flash Cycle and Basic Organic Rankine Cycle for Low Grade Heat Recovery
,”
Energy Procedia
,
142
, pp.
1441
1447
.
28.
Braimakis
,
K.
, and
Karellas
,
S.
,
2023
, “
Exergy Efficiency Potential of Dual-Phase Expansion Trilateral and Partial Evaporation ORC With Zeotropic Mixtures
,”
Energy
,
262
(
Part B
), p.
125475
.
29.
Daniarta
,
S.
,
Kolasiński
,
P.
, and
Imre
,
A. R.
,
2021
, “
Thermodynamic Efficiency of Trilateral Flash Cycle, Organic Rankine Cycle and Partially Evaporated Organic Rankine Cycle
,”
Energy Convers. Manage.
,
249
, p.
114731
.
30.
Zeynali
,
A.
,
Akbari
,
A.
, and
Khalilian
,
M.
,
2019
, “
Investigation of the Performance of Modified Organic Rankine Cycles (ORCs) and Modified Trilateral Flash Cycles (TFCs) Assisted by a Solar Pond
,”
Sol. Energy
,
182
, pp.
361
381
.
31.
Koomey
,
J.
,
2011
, “
Growth in Data Center Electricity Use 2005 to 2010
,” A Report by Analytical Press, p.
9
.
32.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2014
, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
622
638
.
33.
Jin
,
C.
,
Bai
,
X.
,
Yang
,
C.
,
Mao
,
W.
, and
Xu
,
X.
,
2020
, “
A Review of Power Consumption Models of Servers in Data Centers
,”
Appl. Energy
,
265
, p.
114806
.
34.
Sun
,
K.
,
Luo
,
N.
,
Luo
,
X.
, and
Hong
,
T.
,
2021
, “
Prototype Energy Models for Data Centers
,”
Energy Build.
,
231
, p.
110603
.
35.
Rasmussen
,
N.
,
2005
, “
Guidelines for Specification of Data Center Power Density [White Paper No.120]
,” APC.
36.
Little
,
A. B.
, and
Garimella
,
S.
,
2012
, “
Waste Heat Recovery in Data Centers Using Sorption Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
2
), p.
021007
.
37.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
, and
Thome
,
J. R.
,
2012
, “
On-Chip Two-Phase Cooling of Data-Centers: Cooling Systems and Energy Recovery Evaluation
,”
Appl. Therm. Eng.
,
41
, pp.
36
51
.
38.
Patel
,
C. D.
,
2003
, “
A Vision of Energy Aware Computing From Chips to Datacenters
,”
Proceedings of ISMME 2003
,
Tsuchiura, Japan
,
Dec. 1–3
.
39.
Bash
,
C. E.
,
Patel
,
C. D.
, and
Sharma
,
R. K.
,
2003
, “
Efficient Thermal Management of Data Centers—Immediate and Long—Term Research Needs
,”
HVAC&R Res.
,
92
(
2
), pp.
137
152
.
40.
Ellsworth
,
M. J.
, and
Iyengar
,
M. K.
,
2009
, “
Energy Efficiency Analyses and Comparison of Air and Water Cooled High-Performance Servers
,”
Proceedings of IPACK 009
,
San Francisco, CA
,
July 19–23
, pp.
907
914
.
41.
Campbell
,
L.
, and
Tuma
,
P.
,
2012
, “
Numerical Prediction of the Junction-to-Fluid Thermal Resistance of a 2-Phaseimmersion-Cooled IBM Dual Core POWER 6 Processor
,”
Proceedings of the 28th IEEESEMI-THERM Symposium
,
San Jose, CA
,
Mar. 18–22
, pp.
36
45
.
42.
Hannemann
,
R.
,
Marsala
,
J.
, and
Pitas
,
M.
,
2004
, “
Pumped Liquid Multi Phase Cooling
,”
Proceedings of IMECE 004
,
Anheim, CA
,
Nov. 13–19
, pp.
469
473
.
43.
Haywood
,
A.
,
Sherbeck
,
J.
,
Phelan
,
P.
,
Varsamopoulos
,
G.
, and
Gupta
,
S. K. S.
,
2010
, “
A Sustainable Data Center With Heat Activated Cooling
,”
Proceedings of ITHERM 2010, 12th Inter Society Conference
,
Las Vegas, NV
,
June 2–5
, pp.
1
7
.
44.
Haywood
,
A.
,
Sherbeck
,
J.
,
Phelan
,
P.
,
Varsamopoulos
,
G.
, and
Gupta
,
S. K. S.
,
2012
, “
Thermodynamic Feasibility of Harvesting Data Center Waste Heat to Drive an Absorption Chiller
,”
Energy Convers. Manage.
,
58
, pp.
26
34
.
45.
Vélez
,
F.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Antolín
,
G.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2012
, “
A Technical, Economical and Market Review of Organic Rankine Cycles for the Conversion of Low-Grade Heat for Power Generation
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4175
4189
.
46.
Tchanche
,
B. F.
,
Gr
,
L.
,
Frangoudakis
,
A.
, and
Papadakis
,
G.
,
2011
, “
Low-Grade Heat Conversion Into Power Using Organic Rankine Cycles—A Review of Various Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3963
3979
.
47.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2017
, “
The Viability of Ultra low Temperature Waste Heat Recovery Using Organic Rankine Cycle in Dual Loop Data Center Applications
,”
Appl. Therm. Eng.
,
126
, pp.
393
406
.
48.
Gómez-Chaparro
,
M.
,
García-Sanz-Calcedo
,
J.
, and
Armenta Márquez
,
L.
,
2018
, “
Analytical Determination of Medical Gases Consumption and Their Impact on Hospital Sustainability
,”
Sustainability
,
10
(
8
), p.
2948
.
49.
Bramucci
,
M.
,
Di Santo
,
D.
, and
Forni
,
D.
, “
Uso Razionale Dell’energia nei Centri di Calcolo
,” ENEA, Report RdS/2010/221.
50.
Guiducci
,
F.
, “
HP Data Center Transformation—Critical Facilities Services
.”
51.
Rasmussen
,
N.
, “
Linee guida per calcolare la densità di potenza dei Data Center
,” 0White Paper 120, Schneider Electric, https://download.schneider-electric.com/files?p_Doc_Ref=SPD_NRAN-72754V_EN, Accessed February 2022.
52.
Tang
,
Y.
,
Qiu
,
L.-M.
,
Bai
,
Y.
,
Song
,
J.
,
Bao
,
S.-R.
,
Zhang
,
X.-B.
, and
Wang
,
J.-J.
,
2017
, “
Experimental Study on Film Condensation Characteristics at Liquid Nitrogen Temperatures
,”
Appl. Therm. Eng.
,
127
, pp.
256
265
.
53.
Leonard
,
R.
, and
Timmerhaus
,
K.
,
1970
, “
Condensation Studies of Saturated Nitrogen Vapors
,”
Adv. Cryog. Eng.
,
15
, p.
308
.
54.
Zhang
,
T.
,
Zhang
,
X.
,
Xue
,
X.
,
Wang
,
G.
, and
Mei
,
S.
,
2019
, “
Thermodynamic Analysis of a Hybrid Power System Combining Kalina Cycle With Liquid Air Energy Storage
,”
Entropy
,
21
(
3
), p.
220
.
55.
Seok
,
J.
,
Kim
,
D.
,
Lee
,
C.
,
Kim
,
M.
,
Choi
,
J.
, and
Kim
,
S.
,
2018
, “
Development and Performance Test of a Liquid Nitrogen Circulation Pump for HTS Power Cable
,”
Prog. Supercond. Cryog.
,
20
, pp.
28
33
.
You do not currently have access to this content.