Abstract

The present work investigates the cyclic variability of a single-cylinder spark ignition engine fueled with gasoline/natural gas. Return maps and symbol sequence analysis are used to analyze the cycle dynamics at different engine loads and mixture strength. Cycle dynamics is found to be stochastic in nature at high engine loads with low cyclic variability. The frequency of deterministic patterns with close coupling between consecutive cycles is found to be high at low loads with high cyclic variability. In comparison to gasoline, the deterministic effects are found to be more predominant for natural gas fueled engine. The paper also demonstrates that the identification of deterministic patterns and omitting them through an efficient engine management system brings the engine to a stable state from unstable state. The research provides an estimate of how much better engine performance could be achieved with the knowledge of determinism in the system and the subsequent application of this knowledge for efficient engine control.

References

1.
Kammerstatter
,
S.
, and
Sattelmayer
,
T.
,
2012
, “
Influence of Prechamber-Geometry and Operating-Parameters on Cycle-to-Cycle Variations in Lean Large-Bore Natural Gas Engines
,”
Proceedings of the ASME Internal Combustion Engine Division Spring Technical Conference (ICES2012), ASME ICES2012-81180
,
Torino, Piemonte, Italy
,
May 6–9
, pp.
111
120
.
2.
Polk
,
A. C.
,
Gibson
,
C. M.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2013
, “
Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032202
.
3.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Qi
,
Y.
,
2014
, “
Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012003
.
4.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
,
2018
, “
Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
.
5.
Chen
,
H.
,
He
,
J.
, and
Zhong
,
X.
,
2019
, “
Engine Combustion and Emission Fuelled With Natural Gas: A Review
,”
J. Energy Inst.
,
92
(
4
), pp.
1123
1136
.
6.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Limitations of Natural Gas Lean Burn Spark Ignition Engines Derived From Compression Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122308
.
7.
Aktas
,
F.
,
2022
, “
Numerical Investigation of Equivalence Ratio Effects on a Converted Diesel Engine Using Natural Gas
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092305
.
8.
Wakdikar
,
S.
,
2002
, “
Compressed Natural Gas: A Problem or a Solution?
,”
Curr. Sci.
,
82
(
1
), pp.
25
29
.
9.
Amoco
,
B. P.
,
2001
,
Statistical Review of World Energy—2000, in Indian Petroleum and Natural Gas Statistics 1999–2000
,
Economics and Statistics Division, Ministry of Petroleum and Natural Gas
,
New Delhi
.
10.
Economics and Statistics Division, Ministry of Petroleum and Natural Gas, New Delhi
,
2001
, “
Indian Petroleum and Natural Gas Statistics 1999–2000
,” https://mopng.gov.in/
11.
Ministry of Petroleum and Natural Gas, India
,
2000
, “
Basic Statistics on Indian Petroleum and Natural Gas 1999–2000
,” https://mopng.gov.in
12.
Central Pollution Control Board (Ministry of Environment & Forests, Govt. of India)
,
2010
, “
Status of the Vehicular Pollution Control Programme in India
,” East Arjun Nagar, Delhi—110032, http://www.indiaenvironmentportal.org.in
13.
Government of India Ministry of Petroleum & Natural Gas Economics and Statistics Division New Delhi
,
2015
, “
Indian Pand Natural Gas Statistics 2014–15
,” http://petroleum.nic.in
14.
Firouzgan
,
A.
,
2010
, “
An Experimental Assessment of Compression Ratio and Evaluation of Aluminium Cylinder Head in Bi-Fuel (Gasoline + Natural Gas) Engines
,”
J. Engine Res.
,
18
(
18
), pp.
51
61
.
15.
Ramjee
,
E.
, and
Reddy
,
K. V. K.
,
2011
, “
Performance Analysis of a 4-Stroke SI Engine Using CNG as an Alternative Fuel
,”
Indian J. Sci. Technol.
,
4
(
7
), pp.
801
804
.
16.
Liu
,
Y.
,
Yeom
,
J.
, and
Chung
,
S.
,
2013
, “
A Study of Spray Development and Combustion Propagation Processes of Spark-Ignited Direct Injection (SIDI) Compressed Natural Gas (CNG)
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
228
244
.
17.
Geok
,
H. H.
,
Mohamad
,
T. I.
,
Abdullah
,
S.
,
Ali
,
Y.
,
Shamsudeen
,
A.
, and
Adril
,
E.
,
2009
, “
Experimental Investigation of Performance and Emission of a Sequential Port Injection Natural Gas Engine
,”
Eur. J. Sci. Res.
,
30
(
1
), pp.
204
214
.
18.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2011
, “
Natural-Gas Fuelled Spark-Ignition (SI) and Compression-Ignition (CI) Engine Performance and Emissions
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
89
112
.
19.
Mathai
,
R.
,
Malhotra
,
R. K.
,
Subramanian
,
K. A.
, and
Das
,
L. M.
,
2012
, “
Comparative Evaluation of Performance, Emission, Lubricant and Deposit Characteristics of Spark Ignition Engine Fuelled With Natural Gas and 18% Hydrogen-Natural Gas
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
6893
6900
.
20.
Nanthagopal
,
K.
,
Subbarao
,
R.
,
Elango
,
T.
,
Baskar
,
P.
, and
Annamalai
,
K.
,
2011
, “
Hydrogen Enriched Compressed Natural Gas—A Futuristic Fuel for Internal Combustion Engines
,”
Therm. Sci.
,
15
(
4
), pp.
1145
1154
.
21.
Nitnaware
,
P. T.
, and
Suryawanshi
,
J. G.
,
2011
, “
Performance and Emission Reduction of Multi-Cylinder Gasoline Engine Using Natural Gas Sequential Injection
,”
Global J. Pure Appl. Sci. Technol.
,
7
(
3
), pp.
36
48
.
22.
Semin
,
R. A. B.
,
2008
, “
A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines
,”
Am. J. Eng. Appl. Sci.
,
1
(
4
), pp.
302
311
.
23.
Jahirula
,
M. I.
,
Masjuki
,
H. H.
,
Saidur
,
R.
,
Kala
,
M. A.
,
Jayed
,
M. H.
, and
Wazed
,
M. A.
,
2010
, “
Comparative Engine Performance and Emission Analysis of CNG and Gasoline in a Retrofitted Car Engine
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2219
2226
.
24.
Pourkhesalian
,
A. M.
,
Shamekhi
,
A. H.
, and
Salimi
,
F.
,
2010
, “
Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics
,”
Fuel
,
89
(
5
), pp.
1056
1063
.
25.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1996
, “
An Experimental Study of the Cyclic Variability in Spark Ignition Engines
,” SAE Technical Paper 960611.
26.
Selim
,
M.
,
2005
, “
Effect of Engine Parameters and Gaseous Fuel Type on the Cyclic Variability of Dual Fuel Engines
,”
Fuel
,
84
(
7–8
), pp.
961
971
.
27.
Wang
,
S.
, and
Ji
,
C.
,
2012
, “
Cyclic Variation in a Hydrogen-Enriched Spark-Ignition Gasoline Engine Under Various Operating Conditions
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
1112
1119
.
28.
Jungkunz
,
A. F.
, and
Ravi
,
N.
,
2011
, “
Combustion Phasing Variation Reduction for Late-Phasing HCCI Through Cycle-to-Cycle Pilot Injection Timing Control
,”
Proceedings of the ASME, Dynamic Systems and Control Conference DSCC2011 by ASME DSCC2011-6091
,
Arlington, VA
,
Oct. 31–Nov. 2
, pp.
685
692
.
29.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T. W.
, and
Som
,
S.
,
2017
, “
Using LES to Simulate Cycle-to-Cycle Variability During the Gas Exchange Process
,” ASME Paper No. ICEF2017-3591.
30.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
.
31.
Wu
,
S.
,
Patel
,
S. S.
, and
Ameen
,
M. M.
,
2023
, “
Investigating the Origins of Cyclic Variability in Internal Combustion Engines Using Wall-Resolved Large Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051011
.
32.
Demirci
,
A.
,
Dogan
,
H. E.
,
Kutlar
,
O. A.
,
Cihan
,
O.
, and
Arslan
,
H.
,
2023
, “
Investigation of Burn Parameters and Cyclic Variations of a Spark Ignition Engine With Different Combustion Chambers
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
052301
.
33.
Kaul
,
B. C.
,
Vance
,
J. B.
,
Drallmeier
,
J. A.
, and
Sarangapani
,
J.
,
2009
, “
A Method for Predicting Performance Improvements With Effective Cycle-to-Cycle Control of Highly Dilute Spark Ignition Engine Combustion
,”
Proc. IMechE Part D: J. Autom. Eng.
,
223
(
3
), pp.
423
438
.
34.
Saraswati
,
S.
, and
Chand
,
S.
,
2009
, “
Neural Network Models for Multi-step Ahead Prediction of Air–Fuel Ratio in SI Engines
,”
Int. J. Model Ident. Control
,
7
(
3
), pp.
263
274
.
35.
Saraswati
,
S.
, and
Chand
,
S.
,
2010
, “
An Optimization Algorithm for Neural Predictive Control of Air–Fuel Ratio in SI Engines
,”
Proceedings of IEEE 2010 International Conference on Modelling, Identification and Control
,
Okayama, Japan
,
July 17–19
, pp.
527
532
.
36.
Saraswati
,
S.
,
Agarwal
,
P. K.
, and
Chand
,
S.
,
2011
, “
Neural Networks and Fuzzy Logic-Based Spark Advance Control of SI Engines
,”
Expert Syst. Appl.
,
38
(
6
), pp.
6916
6925
.
37.
Kaul
,
B.
,
Wagner
,
R.
, and
Green
,
J.
,
2013
, “
Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation With Observations on Implications for Effective Control
,”
SAE Int. J. Engines
,
6
(
1
), pp.
132
141
.
38.
Litak
,
G.
,
Kamiński
,
T.
,
Czarnigowski
,
J.
,
Żukowski
,
D.
, and
Wendeker
,
M.
,
2007
, “
Cycle-to-Cycle Oscillations of Heat Release in a Spark Ignition Engine
,”
Meccanica
,
42
(
5
), pp.
423
433
.
39.
Litak
,
G.
,
Kamiński
,
T.
,
Czarnigowski
,
J.
,
Sen
,
A. K.
, and
Wendeker
,
M.
,
2009
, “
Combustion Process in a Spark Ignition Engine: Analysis of Cyclic Peak Pressure and Peak Pressure Angle Oscillations
,”
Meccanica
,
44
(
1
), pp.
1
11
.
40.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052203
.
41.
Sun
,
J.
,
Bittle
,
J. A.
, and
Jacobs
,
T. J.
,
2013
, “
Cyclic Variability in Diesel/Gasoline Dual-Fuel Combustion on a Medium-Duty Diesel Engine
,”
Proceedings of the ASME Internal Combustion Engine Division Fall Technical Conference (ICEF2013)
,
Dearborn, MI,
Oct. 13–16
, ICEF2013-19095.
42.
Lehrman
,
M.
,
Rechester
,
A. B.
, and
White
,
R. B.
,
1997
, “
Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations
,”
Phys. Rev. Lett.
,
78
(
1
), pp.
54
57
.
43.
Hellstrom
,
E.
,
Larimore
,
J.
,
Stefanopoulou
,
A. J.
, and
Jiang
,
L.
,
2012
, “
Quantifying Cyclic Variability in a Multicylinder HCCI Engine With High Residuals
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112803
.
44.
Kaul
,
B.
,
Lawler
,
B.
,
Finney
,
C.
, and
Edwards
,
M.
,
2014
, “
Effects of Data Quality Reduction on Feedback Metrics for Advanced Combustion Control
,” SAE Technical Paper 2014-01-2707.
45.
Saraswati
,
S.
, and
Chand
,
S.
,
2009
, “
Identification of One-Zone Heat Release Parameters for SI Engine
,”
Int. J. Model Ident. Control
,
6
(
4
), pp.
287
300
.
46.
Shayler
,
P.
,
Winborn
,
L.
,
Hill
,
M.
, and
Eade
,
D.
,
2000
, “
The Influence of Gas/Fuel Ratio on Combustion Stability and Misfire Limits of Spark Ignition Engines
,” SAE Technical Paper 2000-01-1208.
47.
Xiang-yu
,
L.
,
Bai-gang
,
S.
,
Dong-sheng
,
Z.
,
Xi
,
W.
,
Ling-zhi
,
B.
, and
Qing-he
,
L.
,
2022
, “
Experimental Study on the Cycle Variation Characteristics of Direct Injection Hydrogen Engine
,”
Energy Convers. Manage:X
,
15
, p.
100260
.
48.
Vighnesha
,
N.
,
Shankar
,
K. S.
,
Dinesha
,
P.
, and
Mohanan
,
P.
,
2018
, “
Cycle by Cycle Variations of LPG-Gasoline Dual Fuel on a Multi-Cylinder MPFI Gasoline Engine
,”
Biofuels
,
9
(
6
), pp.
685
692
.
49.
Chen
,
Y.
,
Deng
,
B.
,
Chen
,
M.
, and
Hou
,
K.
,
2021
, “
An Approach to Estimate CCV (Cycle-to-Cycle Variation) of Effective Energy Output of Thermal Engine: A Case Study on a High Speed Gasoline Engine
,”
Case Studies Therm. Eng.
,
28
, p.
101624
.
50.
Duan
,
X.
,
Liu
,
J.
,
Yuan
,
Z.
,
Guo
,
G.
,
Liu
,
Q.
,
Tang
,
Q.
,
Deng
,
B.
, and
Guan
,
J.
,
2018
, “
Experimental Investigation of the Effects of Injection Strategies on Cycle-to-Cycle Variations of a DISI Engine Fueled With Ethanol and Gasoline Blend
,”
Energy
,
165
, pp.
455
470
.
51.
Zheng
,
M.
, and
Reader
,
G. T.
,
1995
, “
Preliminary Investigation of Cycle-to-Cycle Variations in a Nonair-Breathing Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
117
(
1
), pp.
24
28
.
52.
Juttu
,
S.
,
Thipse
,
S. S.
,
Mishra
,
P.
,
Dhande
,
N. B.
,
Marathe
,
N. V.
, and
Babu
,
M. K. G.
,
2010
, “
Experimental Investigations of Cycle-to-Cycle and Cylinder-to-Cylinder Variation of PCCI Combustion With High Injection Pressures
,”
Proceedings of the ASME Internal Combustion Engine Division Fall Technical Conference (ICEF2010)
,
San Antonio, TX
,
Sept. 12–15
, pp.
265
277
.
53.
Ge
,
P.
, and
Hung
,
D. L. S.
,
2017
, “
Investigation of Cycle-to-Cycle Variation of In-Cylinder Engine Swirl Flow Fields Using Quadruple Proper Orthogonal Decomposition
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072803
.
54.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
, and
Dimaratos
,
A. M.
,
2013
, “
Studying Combustion and Cyclic Irregularity of Diethyl Ether as Supplement Fuel in Diesel Engine
,”
Fuel
,
109
, pp.
325
335
.
55.
Daw
,
C.
,
Finney
,
C.
,
Green
,
J.
, and
Kennel
,
M.
,
1996
, “
A Simple Model for Cyclic Variations in a Spark-Ignition Engine
,” SAE Technical Paper 962086.
You do not currently have access to this content.