Abstract

Concentrated solar power (CSP) with thermal energy storage (TES) has the potential to achieve grid parity. This can be realized by operating CSP systems at temperatures above 700 °C with high-efficiency sCO2 power cycles. However, operating CSP systems at such temperatures poses several challenges, among which the design of solar receivers to accommodate increased thermal loads is critical. To this end, this work explores and optimizes various swirl-inducing internal fin designs for solar receiver tubes. These fin designs not only improve the thermal performance of receiver tubes but also levelize temperature unevenness caused by non-uniform thermal loading. In this work, the geometric parameters of the fin designs are optimized to maximize the Nusselt number with a constraint on the friction factor. This optimization, however, is computationally intensive, requiring hundreds of simulation calls to computational fluid dynamics (CFD) models. To circumvent this problem, surrogate models are used to approximate the simulation outputs needed during the optimization. In addition, this study also examines the fin designs from an entropy generation perspective. To this end, the entropy contributions from thermal and viscous effects are quantitatively compared while varying the operational Reynolds number.

References

1.
Merchán
,
R.
,
Santos
,
M.
,
Medina
,
A.
, and
Hernández
,
A. C.
,
2021
, “
High Temperature Central Tower Plants for Concentrated Solar Power: 2021 Overview
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111828
.
2.
Jorgenson
,
J.
,
Mehos
,
M.
, and
Denholm
,
P.
,
2016
, “
Comparing the Net Cost of CSP-TES to PV Deployed With Battery Storage
,”
AIP Conf. Proc.
,
1734
, p.
080003
.
3.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,” Technical Report,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
4.
Turchi
,
C.
,
Gage
,
S.
,
Martinek
,
J.
,
Jape
,
S.
,
Armijo
,
K.
,
Coventry
,
J.
,
Pye
,
J.
,
Asselineau
,
C.-A.
, et al
,
2021
, “
CSP Gen3: Liquid-Phase Pathway to Sunshot
,” Technical Report,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
5.
Wang
,
X.
,
Rincon
,
J. D.
,
Li
,
P.
,
Zhao
,
Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041005
.
6.
Wang
,
K.
,
Molina
,
E.
,
Dehghani
,
G.
,
Xu
,
B.
,
Li
,
P.
,
Hao
,
Q.
,
Lucas
,
P.
,
Kassaee
,
M. H.
,
Jeter
,
S. M.
, and
Teja
,
A. S.
,
2014
, “
Experimental Investigation to the Properties of Eutectic Salts by NaCl-KCl-ZnCl2 for Application as High Temperature Heat Transfer Fluids
,” Energy Sustainability, Vol.
45868
,
American Society of Mechanical Engineers
, p.
V001T02A040
.
7.
He
,
Y.-L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B.-C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.
8.
Pidaparthi
,
B.
,
Missoum
,
S.
, and
Xu
,
B.
,
2022
, “
CFD Based Design Optimization of Multiple Helical Swirl-Inducing Fins for Concentrated Solar Receivers
,” Energy Sustainability, Vol.
85772
,
American Society of Mechanical Engineers
, p.
V001T05A001
.
9.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
10.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
11.
Turchi
,
C. S.
,
Libby
,
C.
,
Pye
,
J.
, and
Coventry
,
J.
,
2021
, “
Molten Salt Vs. Liquid Sodium Receiver Selection Using the Analytic Hierarchy Process
.” Technical Report,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
12.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys. Compd.
,
585
, pp.
713
721
.
13.
Rodriguez-Sanchez
,
M. D. I. R.
,
Sanchez-Gonzalez
,
A.
,
Marugan-Cruz
,
C.
, and
Santana
,
D.
,
2015
, “
Flow Patterns of External Solar Receivers
,”
Sol. Energy
,
122
, pp.
940
953
.
14.
Pidaparthi
,
B.
,
Li
,
P.
, and
Missoum
,
S.
,
2020
, “
Entropy-Based Optimization of Helical Fins for Heat Transfer Enhancement Inside Tubes
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
84591
,
American Society of Mechanical Engineers
, p.
V011T11A046
.
15.
Pidaparthi
,
B.
,
Li
,
P.
, and
Missoum
,
S.
,
2022
, “
Entropy-Based Optimization for Heat Transfer Enhancement in Tubes With Helical Fins
,”
ASME J. Heat. Transfer- Trans. ASME
,
144
(
1
), p.
012001
.
16.
Herwig
,
H.
, and
Kock
,
F.
,
2007
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat and Mass Transfer
,
43
(
3
), pp.
207
215
.
17.
ANSYS Inc.
, Ansys® Academic Research Fluent, Theory Guide, Release 19.3.
18.
Cressie
,
N.
,
1990
, “
The Origins of Kriging
,”
Math. Geol.
,
22
(
3
), pp.
239
252
.
19.
Pidaparthi
,
B.
, and
Missoum
,
S.
,
2019
, “
Stochastic Optimization of Nonlinear Energy Sinks for the Mitigation of Limit Cycle Oscillations
,”
AIAA J.
,
57
(
5
), pp.
2134
2144
.
20.
Pidaparthi
,
B.
,
2023
, “
Computational Design Optimization and Reliability Assessment of Thermal Systems
,” Ph.D. thesis,
The University of Arizona
,
Ann Arbor, MI
.
21.
Souza Mendes
,
P.
, and
Sparrow
,
E.
,
1984
, “
Periodically Converging-Diverging Tubes and Their Turbulent Heat Transfer, Pressure Drop, Fluid Flow, and Enhancement Characteristics
.”
22.
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2018
, “A Review of Heat Transfer Enhancement Methods Using Coiled Wire and Twisted Tape Inserts,”
Heat Transfer: Models, Methods and Applications
,
K.
Volkov
, ed.,
IntechOpen
,
London, UK
, pp.
199
217
.
23.
Bejan
,
A.
,
2013
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
New York
.
24.
Naterer
,
G.
, and
Camberos
,
J.
,
2003
, “
Entropy and the Second Law Fluid Flow and Heat Transfer Simulation
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
360
371
.
25.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
4
), pp.
718
725
.
26.
Hatcher
,
S.
,
Khadka
,
R.
,
Pidaparthi
,
B.
,
Missoum
,
S.
,
Li
,
P.
, and
Xu
,
B.
,
2022
, “
Multiphysics Numerical Study of Solar Receiver Tube for Enhanced Thermal Efficiency and Durability in Concentrated Solar Power Tower Plant
,”
Energy Sustainability
, Vol.
85772
,
American Society of Mechanical Engineers
, p.
V001T05A002
.
You do not currently have access to this content.