Abstract

Drilling deep wells became common in the oil and gas sector as a result of the high demand for energy in the world. This type of wells is not trivial to drill as a result several challenges that they encounter, such as harsh conditions represented by high-pressure and high-temperature (HPHT), and the high hydrostatic column required to prevent the kick. Therefore, advanced materials are desired and accordingly higher concentration of weighting material is required to drill such resources. In this work, a systematic investigation of the hematite concentration effect on the water-based drilling fluid properties is performed. Three doses were overloaded to a constant drill fluid recipe. Then, the drilling fluid properties including density, viscosities, filtration, and filter cake properties were evaluated. The viscosities were assessed at the temperature of 120 °F, before and after aging in a hot rolling oven for 16 h at 250 °F and 500 psi. The American Petroleum Institute filtration test was performed at ambient temperature and 100 psi. The results showed that the hematite concentration has proportional relation to the apparent viscosity, plastic viscosity, and yield point before and after the hot rolling. The YP/PV ratio was decreased as the hematite dose increased in the drilling fluid. Similarly, the gel strengths at 10 s and 10 min were increased as the concentration of hematite increased. The filter cake thinness, filtration volume, and filter cake permeability were also amplified as the hematite concentration increased, where the filter cake porosity was almost kept constant. In addition, several correlations were drawn as a function of the hematite dosage for the examined drilling properties.

References

1.
Hossain
,
M. E.
, and
Al-Majed
,
A. A. A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
, Vol.
39
,
Scrivener Publishing
.
2.
Ahmed
,
A.
,
Basfar
,
S.
,
Elkatatny
,
S.
, and
Bageri
,
B.
,
2022
, “
Vermiculite for Enhancement of Barite Stability in Water-Based Mud at Elevated Temperature
,”
Powder Technol.
,
401
, p.
117277
.
3.
Jafarov
,
T.
,
Mahmoud
,
M.
,
Al-Majed
,
A.
,
Elkatatny
,
S.
, and
Bageri
,
B. S.
,
2018
, “
Improving Well Productivity of Tight Gas Reservoirs by Using Sodium Silicate in Water-Based Drill-In Fluid
,”
SPE International Symposium on Formation Damage Control, SPE-189535-MS
,
Lafayette, LA, USA
,
February 7–9
.
4.
Barrett
,
M. L.
,
2011
, “
Drilling Mud: A 20th Century History
,”
Oil-Ind. Hist.
,
12
(
1
), pp.
161
168
.
5.
Katende
,
A.
,
Boyou
,
N. V.
,
Ismail
,
I.
,
Chung
,
D. Z.
,
Sagala
,
F.
,
Hussein
,
N.
, and
Ismail
,
M. S.
,
2019
, “
Improving the Performance of Oil Based Mud and Water Based Mud in a High Temperature Hole Using Nanosilica Nanoparticles
,”
Colloids Surf., A
,
577
, pp.
645
673
.
6.
Schwertmann
,
U.
,
Cornell
,
R. M.
,
Rao
,
C. N. R.
,
Raveau
,
B.
,
Jolivet
,
J.-P.
,
Henry
,
M.
, and
Livage
,
J.
,
2003
,
The Iron Oxides
,
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
7.
Kausar
,
A.
,
2020
, “
Polymeric Materials Filled With Hematite Nanoparticle: Current State and Prospective Application
,”
Polym. Technol. Mater.
,
59
(
3
), pp.
323
338
.
8.
Muhajir
,
M.
,
Puspitasari
,
P.
, and
Razak
,
J. A.
,
2019
, “
Synthesis and Applications of Hematite α-Fe2O3: A Review
,”
J. Mech. Eng. Sci. Technol.
,
3
(
2
), pp.
51
58
.
9.
Ashraf
,
M.
,
Khan
,
I.
,
Usman
,
M.
,
Khan
,
A.
,
Shah
,
S. S.
,
Khan
,
A. Z.
,
Saeed
,
K.
, et al
,
2020
, “
Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review
,”
Chem. Res. Toxicol.
,
33
(
6
), pp.
1292
1311
.
10.
Iandolo
,
B.
,
Wickman
,
B.
,
Zorić
,
I.
, and
Hellman
,
A.
,
2015
, “
The Rise of Hematite: Origin and Strategies to Reduce the High Onset Potential for the Oxygen Evolution Reaction
,”
J. Mater. Chem. A
,
3
(
33
), pp.
16896
16912
.
11.
Walker
,
C. O.
,
1983
, “
Alternative Weighting Material
,”
J. Pet. Technol.
,
35
(
13
), pp.
2158
2164
.
12.
Scharf
,
A. D.
, and
Watts
,
R. D.
,
1984
, “
Itabirite: An Alternative Weighting Material for Heavy Oil-Base Muds
,”
59th Annual Techanical Conference and Exhibition
,
Houston, TX
,
Sept. 16–19
.
13.
Simpson
,
J. P.
,
1985
,
The Drilling Mud Dilemma—Recent Examples
,
J. Pet. Technol.
37
(
02
), pp.
201
207
.
14.
Tovar
,
J.
,
Rodríguez
,
Z.
,
Quiroga
,
F.
,
Greaves
,
R.
,
Meléndez
,
H.
,
Arocha
,
J.
,
Bland
,
R.
, and
Hebert
,
M.
,
1999
, “
ORIMATITAO®. An Improved Hematite for Drilling Fluids
,”
1999 SPE Latin American and Caribbean Petroleum Engineering Conference
,
Caracas, Venezuela
,
Apr. 21–23
.
15.
Quercia
,
G.
,
Belisario
,
R.
, and
Rengifo
,
R.
,
2009
, “
Reduction of Erosion Rate by Particle Size Distribution (PSD) Modification of Hematite As Weighting Agent for Oil Based Drilling Fluids
,”
Wear
,
266
(
11–12
), pp.
1229
1236
.
16.
Rengifo
,
R.
,
Quiroga
,
F.
,
Quercia
,
G.
,
Chacón
,
O.
,
Ojeda
,
F.
, and
Rollinson
,
J.
,
2004
, “
Experiencias En El Uso de La ORIMATITA® Como Densificante de Fluidos de Perforación En El Norte de Monagas, Venezuela
,”
International Seminar on Drilling, Completions Fluids and Cementing for Oil Wells
,
Margarita, Venezuela
,
May 24–28
, pp.
1
24
.
17.
Rengifo
,
R.
,
Quiroga
,
F.
,
Quercia
,
G.
,
Chacón
,
O.
,
Castillo
,
D.
,
Molina
,
P.
,
Belisario
,
R.
,
Ojeda
,
F.
, and
Mata
,
G.
,
2003
, “
Aplicación Exitosa de Un Fluido de Perforación Densificado Con ORIMATITA® En Condiciones de Alto Caudal y Alta Densidad En El Norte de Monagas, Venezuela
,”
X International Congress of Colombian Association of Petroleum Engineers (ACIPET)
, pp.
1
12
.
18.
Mao
,
H.
,
Yang
,
Y.
,
Zhang
,
H.
,
Zheng
,
J.
, and
Zhong
,
Y.
,
2020
, “
Conceptual Design and Methodology for Rheological Control of Water-Based Drilling Fluids in Ultra-High Temperature and Ultra-High Pressure Drilling Applications
,”
J. Pet. Sci. Eng.
,
188
(
1
), p.
106884
.
19.
Santos
,
N. B. C.
,
Fagundes
,
F. M.
,
Faim
,
J. G. P.
,
,
L. F. R.
,
Souza
,
E. A.
,
Damasceno
,
J. J. R.
, and
Arouca
,
F. O.
,
2020
, “
Evaluation of the Settling Behavior of Hematite in an Olefin-Based Drilling Fluid Using Gamma-Ray Attenuation Technique
,”
J. Pet. Sci. Eng.
,
192
, p.
107281
.
20.
Bageri
,
B. S.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Patil
,
S.
,
2021
, “
Effect of Different Weighting Agents on Drilling Fluids and Filter Cake Properties in Sandstone Formations
,”
ACS Omega
,
6
(
24
), pp.
16176
16186
.
21.
Al Jaber
,
J.
,
Bageri
,
B. S.
,
Gamal
,
H.
, and
Elkatatny
,
S.
,
2021
, “
The Role of Drilled Formation in Filter Cake Properties Utilizing Different Weighting Materials
,”
ACS Omega
,
6
(
37
), pp.
24039
24050
.
22.
Bageri
,
B. S.
,
Al-Mutairi
,
S. H.
, and
Mahmoud
,
M. A.
,
2013
, “
Different Techniques for Characterizing the Filter Cake,” Society of Petroleum Engineers—SPE Middle East Unconventional Gas Conference and Exhibition 2013
,
UGAS 2013—Unconventional and Tight Gas: Bridging the Gaps for Sustainable Economic Development
,
Muscat, Oman
,
Jan. 28
,
Society of Petroleum Engineers
, pp.
104
116
.
23.
Bageri
,
B. S.
,
Adebayo
,
A. R.
,
Al Jaberi
,
J.
,
Patil
,
S.
, and
Salin
,
R. B.
,
2021
, “
Evaluating Drilling Fluid Infiltration in Porous Media—Comparing NMR, Gravimetric, and X-Ray CT Scan Methods
,”
J. Pet. Sci. Eng.
,
198
, p.
108242
.
24.
Akpan
,
E. U.
,
Enyi
,
G. C.
, and
Nasr
,
G. G.
,
2020
, “
Enhancing the Performance of Xanthan Gum in Water-Based Mud Systems Using an Environmentally Friendly Biopolymer
,”
J. Pet. Explor. Prod. Technol.
,
10
(
5
), pp.
1933
1948
.
25.
Gautam
,
S.
, and
Guria
,
C.
,
2020
, “
Optimal Synthesis, Characterization, and Performance Evaluation of High-Pressure High-Temperature Polymer-Based Drilling Fluid: The Effect of Viscoelasticity on Cutting Transport, Filtration Loss, and Lubricity
,”
SPE J.
,
25
(
3
), pp.
1333
1350
.
You do not currently have access to this content.