Abstract

The current study explores the possibility of cooling the vanes and blades of a direct-fired sCO2 turbine using film cooling. The operating conditions of a direct-fired sCO2 cycle and thermophysical properties of the fluid at those conditions can alter the flow field characteristics of the coolant jet and its mixing with the mainstream. Very little information is present in the literature regarding the performance of film cooling geometries employing supercritical CO2. The objective of this study is to estimate the resulting film cooling effectiveness while also capturing the effects of the crossflow-to-mainstream velocity ratio on the coolant jet. A computational fluid dynamic model is used to study the coolant jet exiting a cylindrical hole located on a flat plate, with the coolant fed by an internal channel. Steady-state Reynolds-averaged Navier–Stokes equations were solved along with the (shear-stress transport) SST k–ω model to provide the turbulence closure. The operating conditions for the direct-fired sCO2 turbine are obtained using an in-house Cooled Turbine Model. Numerical predictions revealed that the crossflow effects and jet lift-off were more pronounced in the case of sCO2 when compared to air. Spatial distribution of flow field and cooling effectiveness are presented at different operating conditions.

References

1.
Weiland
,
N. T.
, and
White
,
C. W.
,
2018
, “
Techno-Economic Analysis of an Integrated Gasification Direct-Fired Supercritical CO2 Power Cycle
,”
Fuel
,
212
, pp.
613
625
.
2.
Can Uysal
,
S.
, and
Weiland
,
N.
,
2022
, “
Turbomachinery Design of an Axial Turbine for a Direct Fired sCO2 Cycle
,”
Energy Convers. Manage.
,
267
, p.
115913
.
3.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Procedia
,
37
, pp.
1135
1149
.
4.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
, pp.
5948
5966
.
5.
Clarke
,
D. R.
,
Oechsner
,
M.
, and
Padture
,
N. P.
,
2012
, “
Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines
,”
MRS Bull.
,
37
(
10
), pp.
891
898
.
6.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
London
.
7.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
8.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
9.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
.
10.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.
11.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
12.
Ramesh
,
S.
,
Ramirez
,
D. G.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2016
, “
Analysis of Film Cooling Performance of Advanced Tripod Hole Geometries With and Without Manufacturing Features
,”
Int. J. Heat Mass Transfer
,
94
, pp.
9
19
.
13.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
14.
Han
,
C.
,
Chi
,
Z.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Optimal Arrangement of Combined-Hole for Improving Film Cooling Effectiveness
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011010
.
15.
Schroeder
,
R.
, and
Thole
,
K.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014
,
American Society of Mechanical Engineers
, Paper No. GT2014-25992, pp.
1
13
.
16.
Searle
,
M.
,
Roy
,
A.
,
Black
,
J.
,
Straub
,
D.
, and
Ramesh
,
S.
,
2022
, “
Investigating Gas Turbine Internal Cooling Using Supercritical CO2 at Higher Reynolds Numbers for Direct Fired Cycle Applications
,”
ASME J. Turbomach.
,
144
(
1
), p.
011007
.
17.
Roy
,
A.
,
Searle
,
M.
,
Ramesh
,
S.
, and
Straub
,
D.
,
2022
, “
Investigation of Gas Turbine Internal Cooling Using Supercritical CO2—Effect of Surface Roughness and Channel Aspect Ratio
,”
Proceedings of ASME Turbo Expo 2022
, Paper No. GT2022-83319, pp.
1
17
.
18.
Khadse
,
A.
,
Curbelo
,
A.
,
Vesely
,
L.
, and
Kapat
,
J. S.
,
2020
, “
A Numerical Study on Conjugate Heat Transfer for Supercritical CO2 Turbine Blade With Cooling Channels
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2020-14679, pp.
1
8
.
19.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
7
, pp.
321
379
.
20.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.
21.
Pedersen
,
D. R. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
4
), pp.
620
627
.
22.
Liess
,
C.
,
1975
, “
Experimental Investigation of Film Cooling With Ejection From a Row of Holes for the Application to Gas Turbine Blades
,”
ASME J. Eng. Power
,
97
(
1
), pp.
21
27
.
23.
Hay
,
N.
,
Lampard
,
D.
, and
Saluja
,
C. L.
,
1985
, “
Effects of Cooling Films on the Heat Transfer Coefficient on a Flat Plate With Zero Mainstream Pressure Gradient
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
105
110
.
24.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1989
, “
The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling
,”
ASME J. Turbomach.
,
111
(
1
), pp.
57
62
.
25.
Eckert
,
E. R. G.
,
1992
, “
Similarity Analysis of Model Experiments for Film Cooling in Gas Turbines
,”
Heat Mass Transfer
,
27
(
4
), pp.
217
223
.
26.
Sinha
,
A. K. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
27.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
28.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
29.
Baldauf
,
S.
, and
Scheurlen
,
M.
,
1996
, “
CFD Based Sensitivity Study of Flow Parameters for Engine Like Film Cooling Conditions
,”
Proceedings of ASME Turbo Expo
, Paper No. 96GT-310, pp.
1
9
.
30.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
31.
Burd
,
S. W. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
(
4
), pp.
791
798
.
32.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
33.
Drost
,
U.
,
Bölcs
,
A.
, and
Bölcs
,
A.
,
1999
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
,
121
(
2
), pp.
233
242
.
34.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
35.
Greiner
,
N. J.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2015
, “
Scaling of Film Cooling Performance From Ambient to Engine Temperatures
,”
ASME J. Turbomach.
,
137
(
7
), p.
071007
.
36.
Burd
,
S. W. S.
, and
Simon
,
T. T. W.
,
1997
, “
The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness
,”
Proceedings of ASME Turbo Expo
, Paper No. 97GT-25, pp.
1
10
.
37.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
38.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
39.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-flow
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2008-51030, pp.
1
10
.
40.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
41.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
42.
Stratton
,
Z. T.
,
Barr
,
B.
,
Shih
,
T. I. P.
,
Briggs
,
R.
, and
Laskowski
,
G. M.
,
2015
, “
Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes
,”
Proceedings of ASME Turbo Expo
,
American Society of Mechanical Engineers
, Paper No. GT2015-42771, pp.
1
10
.
43.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
,
Steinthorsson
,
E.
,
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film Cooled Turbine Vane
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2003-36886, pp.
1
10
.
44.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2003-38369.
45.
Silieti
,
M.
,
Divo
,
E.
, and
Kassab
,
A. J.
,
2004
, “
Numerical Investigation of Adiabatic and Conjugate Film Cooling Effectiveness on a Single Cylindrical Film-Cooling Hole
,”
Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
, pp.
333
343
.
46.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.
47.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2012
, “
Evaluation of CFD Simulations of Film Cooling Performance in the Showerhead Region of a Turbine Vane Including Conjugate Effects
,”
ASME 2012 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
, pp.
1977
1986
.
48.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
Proceedings of ASME Turbo Expo
,
American Society of Mechanical Engineers
, Paper No. GT2008-51423, pp.
1187
1196
.
49.
Na
,
S.
,
Zhu
,
B.
,
Bryden
,
M.
, and
Shih
,
T. I. P.
,
2006
, “
CFD Analysis of Film Cooling
,”
Proceedings of 44th AIAA Aerospace Sciences Meeting
, Paper No. AIAA 2006-0022, pp.
1
10
.
50.
Stratton
,
Z. T.
,
2014
,
"Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes," Ph.D. Thesis, Purdue University
.
51.
T.A.D., Kampe
,
T.
,
Völker
,
S.
,
Sämel
,
T.
,
Heneka
,
C.
,
Ladisch
,
H.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes1
,”
ASME J. Turbomach.
,
135
(
1
), p.
011026
.
52.
Repko
,
T. W.
,
Nix
,
A. C.
,
Uysal
,
S. C.
, and
Sisler
,
A. T.
,
2016
, “
Flow Visualization of Multi-hole Film-Cooling Flow Under Varying Freestream Turbulence Levels
,”
J. Flow Control, Meas. Visualization
,
4
, pp.
13
29
.
53.
Repko
,
T. W.
,
Nix
,
A. C.
,
Uysal
,
C.
, and
Heidmann
,
J. D.
,
2016
, “
Numerical Study on the Effects of Freestream Turbulence on Antivortex Film Cooling Design at High Blowing Ratio
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011013
.
54.
Heidmann
,
J. D.
,
2008
, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,”
Volume 4: Heat Transfer, Parts A and B
, pp.
789
799
.
55.
Keimasi
,
M. R. M.
, and
Taeibi-Rahni
,
M.
,
2001
, “
Numerical Simulation of Jets in a Crossflow Using Different Turbulence Models
,”
AIAA J.
,
39
(
12
), pp.
2268
2277
.
56.
Walters
,
D.
, and
Leylek
,
J.
,
2002
, “
Computational Study of Film-Cooling Effectiveness on a Low-Speed Airfoil Cascade: Part I—Methodology and Validation
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
57.
Oguntade
,
H. I. H. I.
,
Andrews
,
G. E.
,
Burns
,
A.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2010
, “
CFD Predictions of Single Row Film Cooling With Inclined Holes: Influence of Hole Outlet Geometry
,”
Proceedings of ASME Turbo Expo
,
American Society of Mechanical Engineers
, Paper No. GT2010-22308, pp.
1371
1385
.
58.
Ferguson
,
J.
,
Walters
,
D.
, and
Leylek
,
J. H.
,
1998
, “
Performance of Turbulence Models and Near-Wall Treatments in Discrete Jet Film Cooling Simulations
,”
Proceedings of ASME Turbo Expo
, Paper No. 98-GT-438.
59.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1997
, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flowfield
,”
ASME J. Turbomach.
,
119
(
4
), pp.
777
785
.
60.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2002
, “
Computational Study of Film-Cooling Effectiveness on a Low-Speed Airfoil Cascade: Part II—Discussion of Physics
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29
.
61.
Cunha
,
F. J.
,
2006
, “
Heat Transfer Analysis
,” The Gas Turbine Handbook, National Energy Technology Laboratory, www.netl.doe.gov/carbon-management/turbines/handbook.
62.
Uysal
,
S. C.
,
White
,
C. W.
,
Weiland
,
N.
, and
Liese
,
E. A.
,
2022
, “
Cooling Analysis of an Axial Turbine for a Direct Fired sCO2 Cycle and Impacts of Turbine Cooling on Cycle Performance
,”
Energy Convers. Manage.
,
263
, p.
115701
.
63.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res
,
53
(
6
), pp.
2498
2508
.
64.
Stratton
,
Z. T.
, and
Shih
,
T. I.-P.
,
2018
, “
Effects of Density and Blowing Ratios on the Turbulent Structure and Effectiveness of Film-Cooling
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2018-76170.
65.
Anderson
,
J. B.
,
Wilkes
,
E. K.
,
McClintic
,
J. W.
, and
Bogard
,
D. G.
,
2016
, “
Effects of Freestream Mach Number, Reynolds Number, and Boundary Layer Thickness on Film Cooling Effectiveness of Shaped Holes
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2016-56152.
66.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
749
757
.
67.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
68.
Bogard
,
D. G.
,
2006
, “
Airfoil Film Cooling
,” The Gas Turbine Handbook, National Energy Technology Laboratory, www.netl.doe.gov/carbon-management/turbines/handbook.
You do not currently have access to this content.