Abstract

In this paper, an integrated technique has been developed to evaluate and optimize performance of hybrid steam-solvent processes in a post-cold heavy oil production with sand (CHOPS) reservoir with consideration of wormhole networks. A reservoir geological model is developed and calibrated by history matching reservoir pressure with oil, gas, and water production rates as the input constraints, while its wormhole network is characterized with a newly developed pressure-gradient-based (PGB) sand failure criterion conditioned to sand production. Once calibrated, the reservoir geological model incorporated with the wormhole network is then employed to evaluate and optimize performance of hybrid steam-solvent processes under various conditions, during which the net present value (NPV) is maximized with an integrated optimization algorithm by taking injection time, soaking time, production time, and injected fluid composition as controlling variables. It is found that a huff-n-puff process imposes a positive impact on enhancing oil recovery when wormhole network is fully generated and propagated. Addition of alkane solvents into CO2 stream leads to a higher oil recovery compared with that of the CO2 only method, while all hybrid steam-solvent injection achieve high oil recovery by taking advantage of both thermal energy and solvent dissolution. It is found that the NPV reaches its maximum value when the steam temperature is 200 °C for the optimized hybrid steam-solvent scenario.

References

1.
Han
,
G.
,
Bruno
,
M.
, and
Dusseault
,
M. B.
,
2007
, “
How Much Oil You Can Get From CHOPS
,”
J. Can. Pet. Technol.
,
46
(
4
), pp.
24
32
.
2.
Smith
,
G. E.
,
1988
, “
Fluid Flow and Sand Production in Heavy-Oil Reservoirs Under Solution-Gas Drive
,”
SPE Prod. Eng.
,
3
(
2
), pp.
169
180
.
3.
Istchenko
,
C. M.
, and
Gates
,
I. D.
,
2014
, “
Well/Wormhole Model of Cold Heavy-Oil Production With Sand
,”
SPE J.
,
19
(
2
), pp.
260
269
.
4.
Shokri
,
A. R.
, and
Babadagli
,
T.
,
2016
, “
Field Scale Modeling of CHOPS and Solvent/Thermal Based Post CHOPS EOR Applications Considering Non-Equilibrium Foamy Oil Behavior and Realistic Representation of Wormholes
,”
J. Pet. Sci. Eng.
,
137
, pp.
144
156
.
5.
Martinez Gamboa
,
J. J.
, and
Leung
,
J. Y.
,
2019
, “
Design of Field-Scale Cyclic Solvent Injection Processes for Post-CHOPS Applications
,”
Can. J. Chem. Eng.
,
97
(
1
), pp.
123
132
.
6.
Wan
,
T.
,
Wang
,
W.
,
Jiang
,
J.
, and
Zhang
,
Y.
,
2018
, “
Pore-Scale Analysis of Gas Huff-n-Puff Enhanced Oil Recovery and Waterflooding Process
,”
Fuel
,
215
, pp.
561
571
.
7.
Yu
,
W.
,
Lashgari
,
H. R.
,
Wu
,
K.
, and
Sepehrnoori
,
K.
,
2018
, “
CO2 Injection for Enhanced Oil Recovery in Bakken Tight Oil Reservoirs
,”
Fuel
,
159
, pp.
354
363
.
8.
Davidson
,
J. E.
, and
Beckner
,
B. L.
,
2003
, “
Integrated Optimization for Rate Allocation in Reservoir Simulation
,”
SPE Reservoir Eval. Eng.
,
6
(
6
), pp.
426
432
.
9.
Pan
,
Y.
,
Chen
,
Z.
,
Sun
,
J.
,
Bao
,
X.
,
Xiao
,
L.
, and
Wang
,
R.
,
2010
, “
Research Progress of Modelling on Cold Heavy Oil Production With Sand
,”
Presented at the SPE Western Regional Meeting
,
Anaheim, CA
,
May 27–29
, Paper No. SPE-133587-MS.
10.
Haddad
,
A. S.
, and
Gates
,
I. D.
,
2015
, “
Modeling of Cold Heavy Oil Production With Sand (CHOPS) Using a Fluidized Sand Algorithm
,”
Fuel
,
158
, pp.
937
947
.
11.
Fan
,
Z.
, and
Yang
,
D.
,
2017
, “
Quantification of Sand Production by Use of a Pressure-Gradient-Based Sand Failure Criterion
,”
Presented at the SPE Canada Heavy Oil Technical Conference
,
Calgary, AB
,
Feb. 15–16
, Paper No. SPE-185009-MS.
12.
Liu
,
X.
, and
Zhao
,
G.
,
2005
, “
A Fractal Wormhole Model for Cold Heavy Oil Production
,”
J. Can. Pet. Technol.
,
44
(
9
), pp.
31
36
.
13.
Rivero
,
J. A.
,
Coskuner
,
G.
,
Asghari
,
K.
,
Law
,
D. H.-S.
,
Pearce
,
A.
,
Newman
,
R.
,
Birchwood
,
R.
,
Zhao
,
J.
, and
Ingham
,
J.
,
2010
, “
Modeling CHOPS Using a Coupled Flow-Geomechanics Simulator With Nonequilibrium Foamy-Oil Reactions: A Multiwell History Matching Study
,”
Presented at the SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
, Paper No. SPE-135490-MS.
14.
Fan
,
Z.
,
Yang
,
D.
, and
Li
,
X.
,
2019
, “
Quantification of Sand Production Using a Pressure-Gradient-Based Sand-Failure Criterion
,”
SPE J.
,
24
(
3
), pp.
988
1001
.
15.
Jiang
,
L.
,
Liu
,
J.
,
Liu
,
T.
, and
Yang
,
D.
,
2022
, “
Characterization of Wormhole Growth and Propagation Dynamics During Cold Heavy Oil Production With Sand (CHOPS) Processes by Integrating Rate Transient Analysis and a Pressure-Gradient-Based Sand Failure Criterion
,”
SPE J.
Paper No. SPE-208938-PA.
16.
Yang
,
S.
,
Fan
,
Z.
, and
Yang
,
D.
,
2020
, “
A Modified Pressure-Gradient-Based (PGB) Sand Failure Criterion for Dynamically and Preferentially Characterizing Wormhole Growth and Propagation During CHOPS Processes
,”
J. Pet. Sci. Eng.
,
192
, p.
107250
.
17.
Yang
,
S.
, and
Yang
,
D.
,
2022
, “
Integrated Characterization of Wormhole Network by Use of a Modified Pressure-Gradient-Based (PGB) Sand Failure Criterion and Ensemble-Based History Matching During CHOPS Processes
,”
J. Pet. Sci. Eng.
,
208
(
Part E
), p.
109777
.
18.
Brouwer
,
D. R.
, and
Jansen
,
J. D.
,
2004
, “
Dynamic Optimization of Waterflooding With Smart Wells Using Optimal Control Theory
,”
SPE J.
,
9
(
4
), pp.
391
402
.
19.
Chen
,
S.
,
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
An Efficient Methodology for Performance Optimization and Uncertainty Analysis in a CO2 EOR Process
,”
Pet. Sci. Technol.
,
30
(
12
), pp.
1195
1209
.
20.
Li
,
R.
,
Reynolds
,
A. C.
, and
Oliver
,
D. S.
,
2003
, “
History Matching of Three-Phase Flow Production Data
,”
SPE J.
,
8
(
4
), pp.
328
340
.
21.
Sarma
,
P.
,
Aziz
,
K.
, and
Durlofsky
,
L. J.
,
2005
, “
Implementation of Adjoint Solution for Optimal Control of Smart Wells
,”
Presented at the SPE Reservoir Simulation Symposium
,
The Woodlands, TX
,
Jan. 31–Feb. 2
, Paper No. SPE-92864-MS.
22.
Van Doren
,
J. F.
,
Van den Hof
,
P. M.
,
Jansen
,
J. D.
, and
Bosgra
,
O. H.
,
2008
, “
Determining Identifiable Parameterizations for Large-Scale Physical Models in Reservoir Engineering
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
11421
11426
.
23.
Onwunalu
,
J. E.
, and
Durlofsky
,
L. J.
,
2010
, “
Application of a Particle Swarm Optimization Algorithm for Determining Optimum Well Location and Type
,”
Comput. Geosci.
,
14
(
1
), pp.
183
198
.
24.
Mitchell
,
M.
,
1998
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
25.
Chen
,
S.
,
Li
,
H.
, and
Yang
,
D.
,
2010
, “
Optimization of Production Performance in a CO2 Flooding Reservoir Under Uncertainty
,”
J. Can. Pet. Technol.
,
49
(
2
), pp.
71
78
.
26.
Chen
,
B.
, and
Reynolds
,
A. C.
,
2016
, “
Ensemble-Based Optimization of the Water-Alternating-Gas-Injection Process
,”
SPE J.
,
21
(
3
), pp.
786
798
.
27.
Sivanandam
,
S. N.
, and
Deepa
,
S. N.
,
2008
,
Introduction to Genetic Algorithms
,
Springer
,
Berlin
.
28.
Ayala
,
D.
, and
Gates
,
I.
,
2018
, “
SAGD Circulation Phase: History-Match of Field Data in Lloydminster Reservoir Using a Discretized Thermal Wellbore Modelling Simulator
,”
Presented at the SPE Thermal Well Integrity and Design Symposium
,
Banff, AB
,
Nov. 27–29
, Paper No. SPE-193354-MS.
29.
Zhao
,
M.
,
Yang
,
S.
, and
Yang
,
D.
,
2022
, “
Performance Evaluation of Hybrid Steam-Solvent Processes in a Post-CHOPS Reservoir With Consideration of Wormhole Network
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
043001
.
30.
Jha
,
K. N.
,
1986
, “
A Laboratory Study of Heavy Oil Recovery With Carbon Dioxide
,”
J. Can. Pet. Technol.
,
25
(
2
), pp.
54
63
.
31.
Li
,
S.
,
Li
,
B.
,
Zhang
,
Q.
,
Li
,
Z.
, and
Yang
,
D.
,
2018
, “
Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072907
.
32.
Ivory
,
J.
,
Chang
,
J.
,
Coates
,
R.
, and
Forshner
,
K.
,
2010
, “
Investigation of Cyclic Solvent Injection Process for Heavy Oil Recovery
,”
J. Can. Pet. Technol.
,
49
(
9
), pp.
22
33
.
33.
Lu
,
T.
,
Li
,
Z.
,
Fan
,
W.
, and
Li
,
S.
,
2016
, “
CO2 Huff and Puff for Heavy Oil Recovery After Primary Production
,”
Sci. Technol.
,
6
(
2
), pp.
288
301
.
34.
Chang
,
J.
, and
Ivory
,
J.
,
2013
, “
Field-Scale Simulation of Cyclic Solvent Injection (CSI)
,”
J. Can. Pet. Technol.
,
52
(
4
), pp.
251
265
.
35.
Shokri
,
A. R.
, and
Babadagli
,
T.
,
2016
, “
A Sensitivity Analysis of Cyclic Solvent Stimulation for Post-CHOPS EOR: Application on an Actual Field Case
,”
SPE Econ. Manage.
,
8
(
4
), pp.
078
089
.
37.
Canada Energy Regulator
,
2021,
Energy Commodity Indicators-Crude Oil and Refined Petroleum Products, https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/energy-commodity/energy-commodity-indicators-crude-oil-refined-petroleum-products.html
38.
Butler
,
R. M.
,
McNab
,
G. S.
, and
Lo
,
H. Y.
,
1981
, “
Theoretical Studies on the Gravity Drainage of Heavy Oil During In-Situ Steam Heating
,”
Can. J. Chem. Eng.
,
59
(
4
), pp.
455
460
.
39.
Vittoratos
,
E.
,
Scott
,
G. R.
, and
Beattie
,
C. I.
,
1990
, “
Cold Lake Cyclic Steam Stimulation: A Multiwell Process
,”
SPE J.
,
5
(
1
), pp.
19
24
.
40.
Bayestehparvin
,
B.
,
Farouq Ali
,
S. M.
, and
Abedi
,
J.
,
2019
, “
Solvent-Based and Solvent-Assisted Recovery Processes: State of the Art
,”
SPE Reservoir Eval. Eng.
,
22
(
1
), pp.
29
49
.
41.
Coskuner
,
G.
,
Naderi
,
K.
, and
Babadagli
,
T.
,
2015
, “
An Enhanced Oil Recovery Technology as a Follow Up to Cold Heavy Oil Production With Sand
,”
J. Pet. Sci. Eng.
,
133
, pp.
475
482
.
42.
Kar
,
T.
, and
Hascakir
,
B.
,
2021
, “
Effect of Solvent Type on Emulsion Formation in Steam and Solvent-Steam Flooding Processes for Heavy Oil Recovery
,”
Colloids Surf. A
,
611
, p.
125783
.
43.
Ashrafi
,
M.
,
Souraki
,
Y.
, and
Torsaeter
,
O.
,
2013
, “
Numerical Simulation Study of Field Scale SAGD and ES-SAGD Processes Investigating the Effect of Relative Permeabilities
,”
Energy Environ. Res.
,
3
(
1
), p.
93
.
44.
Chaar
,
M.
,
Venetos
,
M.
,
Dargin
,
J.
, and
Palmer
,
D.
,
2015
, “
Economics of Steam Generation for Thermal Enhanced Oil Recovery
,”
Oil Gas Facil.
,
4
(
6
), pp.
42
50
.
45.
Shokri
,
A. R.
, and
Babadagli
,
T.
,
2014
, “
Modelling of Cold Heavy-Oil Production With Sand for Subsequent Thermal/Solvent Injection Applications
,”
J. Can. Pet. Technol.
,
53
(
2
), pp.
95
108
.
46.
Istchenko
,
C.
, and
Gates
,
I. D.
,
2012
, “
The Well-Wormhole Model of CHOPS: History Match and Validation
,”
Presented at the SPE Heavy Oil Conference Canada
,
Calgary, AB
,
June 12–14
, Paper No. SPE-157795-MS.
47.
Winterbone
,
D.
, and
Turan
,
A.
,
2015
,
Advanced Thermodynamics for Engineers
, 2nd ed.,
Butterworth-Heinemann, Elsevier
,
Oxford
.
48.
Zheng
,
S.
, and
Yang
,
D.
,
2017
, “
Determination of Individual Diffusion Coefficients of C3H8/n-C4H10/CO2/Heavy Oil Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis
,”
SPE J.
,
22
(
3
), pp.
799
816
.
49.
Zheng
,
S.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Coupling Heat and Mass Transfer for Determining Individual Diffusion Coefficient of a Hot C3H8-CO2 Mixture in Heavy Oil Under Reservoir Conditions
,”
Int. J. Heat Mass Transfer
,
102
, pp.
251
263
.
50.
Sun
,
H.
,
Li
,
H.
, and
Yang
,
D.
,
2014
, “
Coupling Heat and Mass Transfer for a Gas Mixture-Heavy Oil System at High Pressures and Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
74
(
7
), pp.
173
184
.
51.
Dong
,
X.
,
Shi
,
Y.
,
Huang
,
D.
, and
Yang
,
D.
,
2022
, “
Quantification of Preferential and Mutual Mass Transfer of Gases-Reservoir Fluid Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis
,”
Int. J. Heat Mass Transfer
,
195
, p.
123188
.
52.
Jang
,
H. W.
, and
Yang
,
D.
,
2022
, “
Determination of Effective Diffusivity of Each Component of a Binary Gas-Mixture in Porous Media Saturated With Heavy Oil
,”
Int. J. Mass Heat Transfer
,
184
, p.
122332
.
53.
Jang
,
H. W.
, and
Yang
,
D.
,
2021
, “
Determination of Individual Concentration-Dependent Diffusivity of the Binary Gas-Mixtures in Reservoir-Fluid Systems
,”
Int. J. Heat Mass Transfer
,
181
, p.
121867
.
54.
Jin
,
L.
,
Pekot
,
L. J.
,
Hawthorne
,
S. B.
,
Salako
,
O.
,
Peterson
,
K. J.
,
Bosshart
,
N. W.
,
Jiang
,
T.
,
Hamling
,
J. A.
, and
Gorecki
,
C. D.
,
2018
, “
Evaluation of Recycle Gas Injection on CO2 Enhanced Oil Recovery and Associated Storage Performance
,”
Int. J. Greenhouse Gas Control
,
75
(
C
), pp.
151
161
.
55.
Al-Saker
,
M. A. B.
,
Jalil
,
I. O. A.
,
Fenoush
,
I. O.
, and
Awad
,
H. G.
,
2021
, “
Reducing Gas Emissions and Burning in Oil Fields: Case Study
,”
Asian Basic Appl. Res. J.
,
4
(
2
), pp.
65
70
.
56.
Ying
,
L.
,
Shen
,
Z.
,
Yang
,
M.
, and
Piao
,
S.
,
2019
, “
Wildfire Detection Probability of MODIS Fire Products Under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records
,”
Remote Sens.
,
11
(
24
), pp.
213
218
.
57.
Azin
,
R.
, and
Izadpanahi
,
A.
,
2021
,
Fundamentals and Practical Aspects of Gas Injection
,
Springer Nature Switzerland AG
,
Cham
.
You do not currently have access to this content.