Abstract

The objective of infill well placement optimization is to determine the optimal well locations that maximize the net present value (NPV). The most common method of well infilling in oil field is based on the engineer’s knowledge, which is risky. Additionally, numerous optimization techniques have been proposed to address the issues. However, locating the global optimum in a large-scale practical reservoir model is computationally expensive, even more so in the realistic extra-low permeability reservoir, where fractures are generated and underground conditions are complex. Thus, both determining well locations solely through human experience and obtaining them through traditional optimization methods have disadvantages in actual engineering applications. In this paper, we propose an infill well optimization strategy based on the divide-and-conquer principle that divides the large-scale realistic reservoir model into several types of small-scale conceptual models using human knowledge and then uses the surrogate-assisted evolutionary algorithm to obtain the infill well laws for this reservoir. The diamond inversed nine-spot well patterns are studied and summarized to provide the optimal infill well placement laws for extra-low permeability reservoirs. Additionally, the laws are implemented in W-77 actual reservoir and the oil recovery has an equivalent increase of 2.205%. The results demonstrate the proposed method’s strong engineering potential and application value, as it combines the benefits of human experience and evolutionary algorithms to determine the optimal infill well placement in a realistic extra-low permeability reservoir development scenario.

References

1.
Hu
,
W.
,
2009
, “
The Present and Future of Low Permeability Oil and Gas in China
,”
Strateg. Study Chin. Acad. Eng.
,
11
(
8
), pp.
29
37
.
2.
Islam
,
J.
,
Vasant
,
P. M.
,
Negash
,
B. M.
,
Laruccia
,
M. B.
,
Myint
,
M.
, and
Watada
,
J.
,
2020
, “
A Holistic Review on Artificial Intelligence Techniques for Well Placement Optimization Problem
,”
Adv. Eng. Software
,
141
, p.
102767
.
3.
Sarma
,
P.
, and
Chen
,
W. H.
,
2008
, “
Efficient Well Placement Optimization With Gradient-Based Algorithms and Adjoint Models
,”
Intelligent Energy Conference and Exhibition
,
Amsterdam, The Netherlands
,
Feb. 25–27
,
Paper No. SPE-112257-MS
.
4.
Zandvliet
,
M.
,
Handels
,
M.
,
van Essen
,
G.
,
Brouwer
,
R.
, and
Jansen
,
J.-D.
,
2008
, “
Adjoint-Based Well-Placement Optimization Under Production Constraints
,”
SPE J.
,
13
(
4
), pp.
392
399
.
5.
Li
,
L.
, and
Jafarpour
,
B.
,
2012
, “
A Variable-Control Well Placement Optimization for Improved Reservoir Development
,”
Comput. Geosci.
,
16
(
4
), pp.
871
889
.
6.
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
Y.
,
Li
,
M.
,
Yao
,
J.
,
Li
,
L.
, and
Lee
,
J.
,
2016
, “
Smart Well Pattern Optimization Using Gradient Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012901
.
7.
Xu
,
J.
,
Guo
,
W.
, and
Zhou
,
W.
,
2022
, “
Well Placement Optimization for Fractured Reservoirs: Coupling StoSAG and EDFM
,”
Geofluids
,
2022
, p.
5912732
.
8.
Bangerth
,
W.
,
Klie
,
H.
,
Wheeler
,
M. F.
,
Stoffa
,
P. L.
, and
Sen
,
M. K.
,
2006
, “
On Optimization Algorithms for the Reservoir Oil Well Placement Problem
,”
Comput. Geosci.
,
10
(
3
), pp.
303
319
.
9.
Li
,
L.
,
Jafarpour
,
B.
, and
Mohammad-Khaninezhad
,
M. R.
,
2013
, “
A Simultaneous Perturbation Stochastic Approximation Algorithm for Coupled Well Placement and Control Optimization Under Geologic Uncertainty
,”
Comput. Geosci.
,
17
(
1
), pp.
167
188
.
10.
Pouladi
,
B.
,
Karkevandi-Talkhooncheh
,
A.
,
Sharifi
,
M.
,
Gerami
,
S.
,
Nourmohammad
,
A.
, and
Vahidi
,
A.
,
2020
, “
Enhancement of SPSA Algorithm Performance Using Reservoir Quality Maps: Application to Coupled Well Placement and Control Optimization Problems
,”
J. Pet. Sci. Eng.
,
189
, p.
106984
.
11.
Onwunalu
,
J. E.
, and
Durlofsky
,
L. J.
,
2010
, “
Application of a Particle Swarm Optimization Algorithm for Determining Optimum Well Location and Type
,”
Comput. Geosci.
,
14
(
1
), pp.
183
198
.
12.
Dong
,
X.
,
Wu
,
Z.
,
Dong
,
C.
,
Chen
,
Z.
, and
Wang
,
H.
,
2011
, “
Optimization of Vertical Well Placement by Using a Hybrid Particle Swarm Optimization
,”
Wuhan Univ. J. Nat. Sci.
,
16
(
3
), pp.
237
240
.
13.
Cheng
,
G.
,
An
,
Y.
,
Wang
,
Z.
, and
Zhu
,
K.
,
2012
, “
Oil Well Placement Optimization Using Niche Particle Swarm Optimization
,”
2012 Eighth International Conference on Computational Intelligence and Security
,
Guangzhou, China
,
November
, pp.
61
64
.
14.
Ding
,
S.
,
Jiang
,
H.
,
Li
,
J.
, and
Tang
,
G.
,
2014
, “
Optimization of Well Placement by Combination of a Modified Particle Swarm Optimization Algorithm and Quality Map Method
,”
Comput. Geosci.
,
18
(
5
), pp.
747
762
.
15.
Afshari
,
S.
,
Pishvaie
,
M. R.
, and
Aminshahidy
,
B.
,
2014
, “
Well Placement Optimization Using a Particle Swarm Optimization Algorithm, a Novel Approach
,”
Pet. Sci. Technol.
,
32
(
2
), pp.
170
179
.
16.
Humphries
,
T. D.
, and
Haynes
,
R. D.
,
2015
, “
Joint Optimization of Well Placement and Control for Nonconventional Well Types
,”
J. Pet. Sci. Eng.
,
126
, pp.
242
253
.
17.
Siavashi
,
M.
,
Tehrani
,
M. R.
, and
Nakhaee
,
A.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052903
.
18.
Pouladi
,
B.
,
Keshavarz
,
S.
,
Sharifi
,
M.
, and
Ahmadi
,
M. A.
,
2017
, “
A Robust Proxy for Production Well Placement Optimization Problems
,”
Fuel
,
206
, pp.
467
481
.
19.
Ding
,
S.
,
Lu
,
R.
,
Xi
,
Y.
,
Wang
,
S.
, and
Wu
,
Y.
,
2019
, “
Well Placement Optimization Using Direct Mapping of Productivity Potential and Threshold Value of Productivity Potential Management Strategy
,”
Comput. Chem. Eng.
,
121
, pp.
327
337
.
20.
Ding
,
S.
,
Lu
,
R.
,
Xi
,
Y.
,
Liu
,
G.
, and
Ma
,
J.
,
2020
, “
Efficient Well Placement Optimization Coupling Hybrid Objective Function With Particle Swarm Optimization Algorithm
,”
Appl. Soft Comput.
,
95
, p.
106511
.
21.
Naderi
,
F.
,
Siavashi
,
M.
, and
Nakhaee
,
A.
,
2021
, “
A Novel Streamline-Based Objective Function for Well Placement Optimization in Waterfloods
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102104
.
22.
Guyaguler
,
B.
, and
Horne
,
R.
,
1999
, “
Optimization of Well Placement
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
64
70
.
23.
Lyons
,
J.
, and
Nasrabadi
,
H.
,
2013
, “
Well Placement Optimization Under Time-Dependent Uncertainty Using an Ensemble Kalman Filter and a Genetic Algorithm
,”
J. Pet. Sci. Eng.
,
109
, pp.
70
79
.
24.
Morales
,
A.
,
Nasrabadi
,
H.
, and
Zhu
,
D.
,
2010
, “
A Modified Genetic Algorithm for Horizontal Well Placement Optimization in Gas Condensate Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 20–22
,
Paper No. SPE-135182-MS
.
25.
Tutuka
,
A.
,
Pudjo
,
S.
,
Kuntjoro Adji
,
S.
,
Edy
,
S.
,
Lala Septem
,
R.
, and
Kenny
,
D.
,
2012
, “
Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties Using a Genetic Algorithm
,”
J. Eng. Technol. Sci.
,
44
(
2
), pp.
106
127
.
26.
Liu
,
S.
,
Agarwal
,
R.
,
Sun
,
B.
,
Wang
,
B.
,
Li
,
H.
,
Xu
,
J.
, and
Fu
,
G.
,
2021
, “
Numerical Simulation and Optimization of Injection Rates and Wells Placement for Carbon Dioxide Enhanced Gas Recovery Using a Genetic Algorithm
,”
J. Cleaner Prod.
,
280
, p.
124512
.
27.
Ariadji
,
T.
,
Haryadi
,
F.
,
Rau
,
I. T.
,
Aziz
,
P. A.
, and
Dasilfa
,
R.
,
2014
, “
A Novel Tool for Designing Well Placements by Combination of Modified Genetic Algorithm and Artificial Neural Network
,”
J. Pet. Sci. Eng.
,
122
, pp.
69
82
.
28.
Wang
,
J.
,
Zhao
,
Z.
,
Liu
,
G.
, and
Xu
,
H.
,
2022
, “
A Robust Optimization Approach of Well Placement for Doublet in Heterogeneous Geothermal Reservoirs Using Random Forest Technique and Genetic Algorithm
,”
Energy
,
254
, p.
124427
.
29.
Forouzanfar
,
F.
,
Poquioma
,
W. E.
, and
Reynolds
,
A. C.
,
2016
, “
Simultaneous and Sequential Estimation of Optimal Placement and Controls of Wells With a Covariance Matrix Adaptation Algorithm
,”
SPE J.
,
21
(
2
), pp.
501
521
.
30.
Bouzarkouna
,
Z.
,
Ding
,
D. Y.
, and
Auger
,
A.
,
2012
, “
Well Placement Optimization With the Covariance Matrix Adaptation Evolution Strategy and Meta-Models
,”
Comput. Geosci.
,
16
(
1
), pp.
75
92
.
31.
Wang
,
X.
,
Haynes
,
R. D.
, and
Feng
,
Q.
,
2016
, “
A Multilevel Coordinate Search Algorithm for Well Placement, Control and Joint Optimization
,”
Comput. Chem. Eng.
,
95
, pp.
75
96
.
32.
Miyagi
,
A.
,
Akimoto
,
Y.
, and
Yamamoto
,
H.
,
2018
, “
Well Placement Optimization for Carbon Dioxide Capture and Storage Via CMA-ES With Mixed Integer Support
,”
Proceedings of the Genetic and Evolutionary Computation Conference Companion
,
Kyoto, Japan
,
July 15–19
, pp.
1696
1703
.
33.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Zhou
,
W.
, and
Liu
,
C.
,
2018
, “
Well Placement Optimization for Offshore Oilfield Based on Theil Index and Differential Evolution Algorithm
,”
J. Pet. Explor. Prod. Technol.
,
8
(
4
), pp.
1225
1233
.
34.
Siddiqui
,
M. A.
,
Khan
,
R. A.
, and
Jamal
,
M. S.
,
2015
, “
Multi-objective Well Placement Optimization Considering Energy Sustainability Along With Economical Gains
,”
SPE North Africa Technical Conference and Exhibition
,
Cairo, Egypt
,
Sept. 14–16
,
Paper No. SPE-175842-MS
.
35.
Zou
,
A.
,
Ye
,
T.
,
Volkov
,
O.
, and
Durlofsky
,
L. J.
,
2022
, “
Effective Treatment of Geometric Constraints in Derivative-Free Well Placement Optimization
,”
J. Pet. Sci. Eng.
,
215
, p.
110635
.
36.
Naderi
,
M.
, and
Khamehchi
,
E.
,
2017
, “
Application of DOE and Metaheuristic Bat Algorithm for Well Placement and Individual Well Controls Optimization
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
47
58
.
37.
Al Dossary
,
M. A.
, and
Nasrabadi
,
H.
,
2016
, “
Well Placement Optimization Using Imperialist Competitive Algorithm
,”
J. Pet. Sci. Eng.
,
147
, pp.
237
248
.
38.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Zhou
,
W.
, and
Geng
,
Y.
,
2017
, “
Well Placement Optimization Using an Analytical Formula-Based Objective Function and Cat Swarm Optimization Algorithm
,”
J. Pet. Sci. Eng.
,
157
, pp.
1067
1083
.
39.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Ma
,
Z.
,
Zhou
,
W.
, and
Liu
,
C.
,
2018
, “
A Meta-Optimized Hybrid Global and Local Algorithm for Well Placement Optimization
,”
Comput. Chem. Eng.
,
117
, pp.
209
220
.
40.
Hongwei
,
C.
,
Qihong
,
F.
,
Xianmin
,
Z.
,
Sen
,
W.
,
Wensheng
,
Z.
, and
Fan
,
L.
,
2019
, “
Well Placement Optimization With Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012902
.
41.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Elkatatny
,
S.
,
2019
, “
Well-Placement Optimization in Heavy Oil Reservoirs Using a Novel Method of In Situ Steam Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032906
.
42.
Salehian
,
M.
,
Haghighat Sefat
,
M.
, and
Muradov
,
K.
,
2022
, “
Multi-solution Well Placement Optimization Using Ensemble Learning of Surrogate Models
,”
J. Pet. Sci. Eng.
,
210
, p.
110076
.
43.
Raji
,
S.
,
Dehnamaki
,
A.
,
Somee
,
B.
, and
Mahdiani
,
M. R.
,
2022
, “
A New Approach in Well Placement Optimization Using Metaheuristic Algorithms
,”
J. Pet. Sci. Eng.
,
215
, p.
110640
.
44.
Salmachi
,
A.
,
Sayyafzadeh
,
M.
, and
Haghighi
,
M.
,
2013
, “
Infill Well Placement Optimization in Coal Bed Methane Reservoirs Using Genetic Algorithm
,”
Fuel
,
111
, pp.
248
258
.
45.
Annan Boah
,
E.
,
Kwami Senyo Kondo
,
O.
,
Aidoo Borsah
,
A.
, and
Brantson
,
E. T.
,
2019
, “
Critical Evaluation of Infill Well Placement and Optimization of Well Spacing Using the Particle Swarm Algorithm
,”
J. Pet. Explor. Prod. Technol.
,
9
(
4
), pp.
3113
3133
.
46.
Hutahaean
,
J.
,
Demyanov
,
V.
, and
Christie
,
M.
,
2019
, “
Reservoir Development Optimization Under Uncertainty for Infill Well Placement in Brownfield Redevelopment
,”
J. Pet. Sci. Eng.
,
175
, pp.
444
464
.
47.
Chu
,
M.-G.
,
Min
,
B.
,
Kwon
,
S.
,
Park
,
G.
,
Kim
,
S.
, and
Huy
,
N. X.
,
2020
, “
Determination of an Infill Well Placement Using a Data-Driven Multi-Modal Convolutional Neural Network
,”
J. Pet. Sci. Eng.
,
195
, p.
106805
.
48.
Malallah
,
A.
,
Alashwak
,
A.
, and
Nashawi
,
I. S.
,
2021
, “
Infill Well Placement Optimization in Two-Dimensional Heterogeneous Reservoirs Under Waterflooding Using Upscaling Wavelet Transform
,”
J. Pet. Sci. Eng.
,
201
, p.
108439
.
49.
Mao
,
Q.
,
Ma
,
X.
, and
Wang
,
Y.
,
2022
, “
A Decision Support Engine for Infill Drilling Attractiveness Evaluation Using Rule-Based Cognitive Computing Under Expert Uncertainties
,”
J. Pet. Sci. Eng.
,
208
, p.
109671
.
50.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Kevin Tucker
,
P.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
51.
Zhou
,
Z.
,
Ong
,
Y. S.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Lum
,
K. Y.
,
2007
, “
Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
,
37
(
1
), pp.
66
76
.
52.
Das
,
S.
, and
Suganthan
,
P. N.
,
2011
, “
Differential Evolution: A Survey of the State-of-the-Art
,”
IEEE Trans. Evol. Comput.
,
15
(
1
), pp.
4
31
.
53.
Wang
,
S. W.
,
Zhang
,
L.X.
,
Zhang
,
W.S.
,
Guo
,
Z.L.
, and
Xie
,
C.W.
,
2014
, “
Survey of Differential Evolution
,”
J. Wuhan Univ.
,
60
(
4
), pp.
283
292
.
You do not currently have access to this content.