Abstract

Undersaturated oil viscosity represents an important physical property for reservoir simulation, enhanced oil recovery, and optimal production. It can be determined either by experimental measurements or by modeling through empirical correlations of appropriate accuracy. As a result of the high cost of its determination experimentally as well as its unavailable in most cases, looking for a high-reliability model is vital. Therefore, in this paper, a new undersaturated crude oil viscosity model using multi-gene genetic programming (MGGP) is presented. This model was built using several data points which are distributed as 528 experimental measurements for a broad range of reservoir pressure and oil properties and 276 points were used for validating and testing the new model. Furthermore, the new model was compared to 11 published correlations. The results indicated that the new MGGP-based model is the closest to the experimental measurements and yields a precise prediction of undersaturated oil viscosity.

References

1.
Al-Marhoun
,
M. A.
,
2004
, “
Evaluation of Empirically Derived PVT Properties for Middle East Crude Oils
,”
J. Pet. Sci. Eng.
,
42
(
2–4
), pp.
209
221
.
2.
Abdul-Majeed
,
G. H.
,
Kattan
,
R. R.
, and
Salman
,
N. H.
,
1990
, “
New Correlation for Estimating the Viscosity of Undersaturated Crude Oils
,”
J. Can. Pet. Technol.
,
29
(
3
), pp.
80
85
.
3.
Bergman
,
D. F.
, and
Sutton
,
R. P.
,
2006
, “
Undersaturated Oil Viscosity Correlation for Adverse Conditions
,”
Proceedings of Society of Petroleum Engineers (SPE), Annual Technical Conference and Exhibition
,
San Antonio
, TX, Paper No. SPE-103144.
4.
Elsharkawy
,
A. M.
, and
Alikhan
,
A. A.
,
1999
, “
Models for Predicting the Viscosity of Middle East Crude Oils
,”
Fuel
,
78
(
8
), pp.
891
903
.
5.
Naseri
,
A.
,
Nikazar
,
M.
, and
Dehgahani
,
S. A. M.
,
2005
, “
A Correlation Approach for Prediction of Crude Oil Viscosities
,”
J. Pet. Sci. Eng.
,
47
(
3–4
), pp.
163
174
.
6.
Alqahtani
,
N. B.
,
AlQuraishi
,
A. A.
, and
Al-Baadani
,
W.
,
2018
, “
New Correlations for Prediction of Saturated and Undersaturated Oil Viscosity of Arabian Oil Fields
,”
J. Pet. Explor. Prod. Technol.
,
8
(
1
), pp.
205
215
.
7.
Beal
,
C.
,
1946
, “
The Viscosity of Air, Water, Natural Gas, Crude Oils and Its Associated Gases at Oil Field Temperatures and Pressures
,”
Trans. AIME
,
165
(
01
), pp.
94
115
.
8.
Hossain
,
M. S.
,
Sarica
,
C.
,
Zhang
,
H. Q.
,
Rhyne
,
L.
, and
Greenhill
,
K.
,
2005
, “
Assessment and Development of Heavy Oil Viscosity Correlations
,”
Proceedings of Society of Petroleum Engineers (SPE) International Thermal Operations and Heavy Oil Symposium
,
Calgary, Canada
, Paper No. SPE-97907.
9.
Kartoatmodjo
,
T.
, and
Schmidt
,
Z.
,
1994
, “
Large Data Bank Improves Crude Physical Property Correlations
,”
Oil Gas J.
,
92
(
27
), pp.
51
55
.
10.
Khan
,
S. A.
,
Al-Marhoun
,
M. A.
,
Duffuaa
,
S. O.
, and
Abu-Khamsin
,
S. A.
,
1987
, “
Viscosity Correlations for Saudi Arabian Crude Oils
,”
Proceedings of Society of Petroleum Engineers (SPE) Middle East Oil Show
,
Bahrain
, Paper No. SPE-15720-MS.
11.
Petrosky
,
G. E. J.
,
1990
, “
PVT Correlations for Gulf of Mexico Crude Oils
,”
MSc thesis
,
University of Sowthwestern Louisiana
,
Lufayette, LA
.
12.
Vazquez
,
M.
, and
Beggs
,
H.
,
1980
, “
Correlations for Fluid Physical Property Prediction
,”
J. Pet. Technol.
,
32
(
06
), pp.
968
970
.
13.
Al-Khafaji
,
A.
,
Abdul-Majeed
,
G.
, and
Hassoon
,
S.
,
1987
, “
Viscosity Correlation for Dead, Live and Undersaturated Crude Oils
,”
J. Pet. Res.
,
6
(
2
), pp.
1
16
.
14.
Labedi
,
R.
,
1992
, “
Improved Correlations for Predicting the Viscosity of Light Crudes
,”
J. Pet. Sci. Eng.
,
8
(
3
), pp.
221
234
.
15.
Almehaideb
,
R. A.
,
1997
, “
Improved PVT Correlations for UAE Crude Oils
,”
Proceedings of Society of Petroleum Engineers (SPE) Middle East Oil Show Conference
, Paper No. SPE 37691.
16.
Dindoruk
,
B.
, and
Christman
,
P. G.
,
2001
, “
PVT Properties and Viscosity Correlations for Gulf of Mexico Oils
,”
Proceedings of Society of Petroleum Engineers (SPE), Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
, Paper No. SPE-71633.
17.
Alavi
,
A. H.
, and
Gandomi
,
A. H.
,
2011
, “
Multi-Stage Genetic Programming: a new Strategy to Nonlinear System Modeling
,”
Inf. Sci.
,
181
(
23
), pp.
5227
5239
.
18.
Azamathulla
,
H.
, and
Ghani
,
A.
,
2011
, “
Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams
,”
J. Water Resour. Manage.
,
25
(
6
), pp.
1537
1544
.
19.
Guven
,
A.
, and
Gunal
,
M.
,
2008
, “
Genetic Programming Approach for Prediction of Local Scour Downstream Hydraulic Structures
,”
J. Irrig. Drain. Eng.
,
134
(
2
), pp.
241
249
.
20.
Koza
,
J. R.
,
1994
, “
Genetic Programming: On the Programming of Computers by Means of Natural Selection
,”
Stat. Comput.
,
4
(
2
), pp.
87
112
.
21.
Shokir
,
E. M. E.-M.
,
2008
, “
Dew Point Pressure Model for Gas Condensate Reservoirs Based on Genetic Programming
,”
Energy Fuels
,
22
(
5
), pp.
3194
3200
.
22.
Shokir
,
E. M. E.-M.
, and
Dmour
,
H. N.
,
2009
, “
Genetic Programming (GP)-Based Model for the Viscosity of Pure and Hydrocarbon Gas Mixtures
,”
Energy Fuels
,
23
(
7
), pp.
3632
3636
.
23.
Shokir
,
E. M. E.-M.
,
El-Awad
,
M. N.
,
Al-Quraishi
,
A.
, and
Al-Mahdy
,
O.
,
2012
, “
Compressibility Factor Model of Sweet, Sour, and Condensate Gases Using Genetic Programming
,”
Chem. Eng. Res. Des.
,
90
(
6
), pp.
785
792
.
24.
Durasevic
,
M.
,
Jakobovic
,
D.
, and
Knezevi
,
K.
,
2016
, “
Adaptive Scheduling on Unrelated Machines With Genetic Programming
,”
Appl. Soft Comput.
,
48
(
11
), pp.
419
430
.
25.
Madar
,
J.
,
Abonyi
,
J.
, and
Szeifert
,
F.
,
2004
, “
Genetic Programming for System Identification
,”
Proceedings of the Intelligent Systems Design and Applications (ISDA) Conference
,
Budapest, Hungary
,
Aug. 26–28
, pp.
43
48
.
26.
Pearson
,
R.
,
2003
, “
Selecting Nonlinear Model Structures for Computer Control
,”
J. Process Control
,
13
(
1
), pp.
1
26
.
27.
Potvin
,
J.-Y.
,
Soriano
,
P.
, and
Vallee
,
M.
,
2004
, “
Generating Trading Rules on the Stock Markets With Genetic Programming
,”
Comput. Oper. Res.
,
31
(
7
), pp.
1033
1047
.
28.
Selig
,
M. S.
, and
Coverstone-Carroll
,
V. L.
,
1996
, “
Application of a Genetic Algorithm to Wind Turbine Design
,”
ASME J. Energy Resour. Technol.
,
118
(
1
), pp.
22
28
.
29.
Feng
,
Q.
,
Cui
,
R.
,
Wang
,
S.
,
Zhang
,
J.
, and
Jiang
,
Z.
,
2019
, “
Estimation of CO2 Diffusivity in Brine by Use of the Genetic Algorithm and Mixed Kernels-Based Support Vector Machine Model
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041001
.
30.
Fawzy
,
D.
,
Moussa
,
S.
, and
Nagwa
,
B.
,
2018
, “
Trio-V Wind Analyzer: A Generic Integral System for Wind Farm Suitability Design and Power Prediction Using Big Data Analytics
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051202
.
31.
Liqun
,
L.
, and
Liu
,
C.
,
2013
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.
32.
Rahman
,
M. M.
, and
Rahman
,
M. K.
,
2012
, “
Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
013101
.
33.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
K.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
34.
Gandomi
,
A. H.
, and
Alavi
,
A. H.
,
2012
, “
A New Multi-Gene Genetic Programming Approach to Nonlinear System Modeling. Part II: Geotechnical and Earthquake Engineering Problems
,”
J. Neural Comput.
,
21
(
1
), pp.
189
201
.
35.
Labedi
,
R. M.
,
1982
, “
PVT Correlations of the African Crudes
” Ph.D. thesis, Colorado School of Mines, Leadville, CO.
36.
Ghetto
,
G. D.
,
1994
, “
Reliability Analysis on PVT Correlations
,”
Proceedings of Society of Petroleum Engineers (SPE), Presented European Petroleum Conference
,
London
, Paper No. SPE-28904.
37.
Searson
,
D. P.
,
2009
, “
GPTIPS: Genetic Programming and Symbolic Regression for MATLAB
, http://gptips.sourceforge.net
38.
Searson
,
D.
,
Leahy
,
D. E.
, and
Willis
,
M.
,
2010
, “
GPTIPS: An Open-Source Genetic Programming Toolbox for Multigene Symbolic Regression
,”
International Multi Conference of Engineers and Computer Scientists
,
Hong Kong
,
Mar. 17–19
, pp.
77
80
.
You do not currently have access to this content.