Abstract

Steam alternating solvent (SAS) process has been proposed as a more environmentally friendly alternative to traditional steam-based processes for heavy oil production. It consists of injecting steam and a non-condensable gas (solvent) alternatively to reduce the oil viscosity. However, optimizing multiple process design (decision) variables is not trivial since multiple conflicting objectives (i.e., maximize the recovery factor, reduce steam–oil ratio) must be considered. Three different multi-objective evolutionary algorithms (MOEAs) are employed to identify a set of Pareto-optimal operational parameters. A multi-objective optimization (MOO) workflow is developed: first, a 2D reservoir model is constructed based on the Fort McMurray formation. Second, a sensitivity analysis is performed to identify the most impactful decision parameters. Third, two response surface (proxy) models and three different MOEAs are employed and compared. This paper is the first to compare different MOEAs for optimizing a wide range of operational parameters for the SAS process. The results show that if more steam is injected, extending the steam cycle duration is preferable. Conversely, if more solvent is injected, it is recommended to start with injecting a solvent with high propane concentrations over short cycles and switch to lower propane concentrations over long cycles near the end.

References

2.
Speight
,
J. G.
,
2009
,
Enhanced Recovery Methods for Heavy Oil and Tar Sands
,
Gulf Publishing Company
,
Houston, TX
.
3.
Ali
,
S. M.
, and
Blunschi
,
J.
,
1983
, “
Cyclic Steam Stimulation With Formation Parting
,”
Annual Technical Meeting. Petroleum Society of Canada
,
Banff, Canada
.
4.
Butler
,
R. M.
,
McNab
,
G. S.
, and
Lo
,
H. Y.
,
1981
, “
Theoretical-Studies on the Gravity Drainage of Heavy Oil During In-Situ Steam Heating
,”
Can. J. Chem. Eng.
,
59
(
4
), pp.
455
460
.
5.
Zhao
,
L.
,
2007
, “
Steam Alternating Solvent Process
,”
SPE Reservoir Eval. Eng.
,
10
(
02
), pp.
185
190
.
6.
Suncor Energy Inc.
,
2020
.
Project: “Solvent+
”. https://www.suncor.com
7.
8.
Leung
,
J. Y.
,
2014
, “
Scale-Up of Effective Mass Transfer in Vapor Extraction Process Accounting for Field-Scale Reservoir Heterogeneities
,”
J. Can. Petrol. Technol.
,
53
(
05
), pp.
275
289
.
9.
Nasr
,
T. N.
, and
Isaacs
,
E. E.
,
2001
, “
Process for Enhancing Hydrocarbon Mobility Using a Steam Additive
”. US patent 6,230,814.
10.
Yadali
,
J.
, and
Ben
,
B.
,
2013
, “
Enhanced Cyclic Solvent Process (ECSP) for Thin Heavy Oil Reservoir
,”
Thesis
,
University of Calgary
.
11.
Zhao
,
L.
,
Nasr
,
T. N.
,
Huang
,
H.
,
Beaulieu
,
G.
,
Heck
,
G.
, and
Golbeck
,
H.
,
2005
, “
Steam Alternating Solvent Process: Lab Test and Simulation
,”
Petroleum Society of Canada.
12.
Deb
,
K.
,
2014
, “Multi-Objective Optimization,”
Search Methodologies
,
E.
Burke
, and
G.
Kendall
, eds.,
Springer
,
Boston, MA
.
13.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2015
, “
Novel Performance Metrics for Robust Multi-Objective Optimization Algorithms
,”
Swarm. Evolut. Comput.
,
21
(
1
), pp.
1
23
.
14.
Gunantara
,
N.
,
2018
, “
A Review of Multi-Objective Optimization: Methods and its Applications
,”
Cogent Eng.
,
5
(
1
), p.
1502242
.
15.
Coimbra
,
L.
,
Ma
,
Z.
, and
Leung
,
J. Y.
,
2019
, “
Practical Application of Pareto-Based Multi-Objective Optimization and Proxy Modeling for Steam Alternating Solvent Process Design
,”
Society of Petroleum Engineers.
16.
Ma
,
Z.
, and
Leung
,
J. Y.
,
2019
, “
Design of Warm Solvent Injection Processes for Heterogeneous Heavy Oil Reservoirs: A Hybrid Work-Flow of Multi-Objective Optimization and Proxy Models
,”
SPE Reservoir Simulation Conference. Society of Petroleum Engineers.
17.
Ghabayen
,
S. M.
,
Madi
,
I. M.
,
Qahman
,
K. A.
, and
Sirdah
,
B. I.
,
2014
, “
Genetic Algorithm Model to Optimize Water Resources Allocation in Gaza Strip
,”
J. Eng. Res. Technol.
,
1
(
1
), pp.
24
31
.
18.
Coello Coello
,
C. A.
, and
Lechuga
,
M. S.
,
2002
, “
MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization
,”
Proceedings of the 2002 Congress on Evolutionary Computation
, Vol. 2,
Honolulu, HI
. CEC'02 (Cat. No.02TH8600), pp.
1051
1056
.
19.
Corne
,
W.
,
Jerram
,
D.
,
Nick
,
R.
,
Knowles
,
Joshua
,
D.
&
Oates
,
J. M.
(
2001
). “
PESA-II: Region-Based Selection in Evolutionary Multi-Objective Optimization
”.
Proceedings of the Sixth International Conference on Parallel Problem Solving From Nature PPSN-VI.
20.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Thiele
,
L.
,
2001
, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
”.
Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH)
,
Zurich, Switzerland
, TIK Report 103.
21.
Li
,
H.
, and
Deb
,
K.
,
2017
, “
Challenges for Evolutionary Multi-Objective Optimization Algorithms in Solving Variable-Length Problems
,”
IEEE Congress on Evolutionary Computation (CEC)
,
San Sebastian
, pp.
2217
2224
.
22.
Collet
,
P.
,
Monmarche
,
N.
,
Legrand
,
P.
,
Schoenauer
,
M.
, and
Lutton
,
E.
,
2009
, “
Artificial Evolution
,”
Nineth International Conference on Evolution Artificielle, EA 2009.
https://link.springer.com/book/10.1007/b96080
23.
Lima
,
D. M. S. d. B.
,
Araújo
,
E. A.
,
Diniz
,
A. A. R.
,
Gurgel
,
A. R.
, and
Da Mata
,
W.
,
2016
, “Analysis of the Intermittency of the Steam Alternating Solvent Process (SAS) Applied to a Heavy Oil Reservoir,”
Computer Aided Chemical Engineering
, Vol.
38
,
Z.
Kravanja
, and
M.
Bogataj
, eds.,
Elsevier
,
New York
, pp.
1743
1748
.
24.
Zheng
,
J.
,
Leung
,
J. Y.
,
Sawatzky
,
R. P.
, and
Alvarez
,
J. M.
,
2017
, “
An AI-Based Workflow for Estimating Shale Barrier Configurations From SAGD Production Histories
,”
Paper Presented at the SPE Canada Heavy Oil Technical Conference
,
Calgary, Alberta, Canada
. https://doi-org.login.ezproxy.library.ualberta.ca/10.2118/184984-MS
25.
Li
,
P.
,
2006
, “
Numerical Simulation of the SAGD Process Coupled With Geomechanical Behavior
,”
Doctoral dissertation
,
University of Alberta
,
Canada
.
26.
Ma
,
Z.
,
Liu
,
Y.
,
Leung
,
J. Y.
, and
Zanon
,
S.
,
2015
, “
Practical Data Mining and Artificial Neural Network Modeling for SAGD Production Analysis
,”
Society of Petroleum Engineers.
27.
Computer Modelling Group LTD., (CMG)
,
2019
. https://www.cmgl.ca/
28.
Butler
,
R. M.
,
1987
, “
Rise of Interfering Steam Chambers
,”
J. Can. Petrol. Technol.
,
26
(
03
), pp.
70
75
.
29.
Zandvliet
,
M.
,
Handels
,
M.
,
Van Essen
,
G.
,
Brouwer
,
R.
, and
Jansen
,
J.-D.
,
2008
, “
Adjoint-Based Well-Placement Optimization Under Production Constraints
,”
SPE J.
,
13
(
04
), pp.
392
399
.
30.
Arora
,
J. S.
,
2012
,
Introduction to Optimum Design
, 3rd ed.,
Academic Press
,
New York
, pp.
411
441
.
31.
Adams
,
B. M.
,
Bauman
,
L. E.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
, et al
,
2015
, “
Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.2 Users Manual
”. Technical Report SAND2014-4633,
Sandia National Laboratories
,
Albuquerque, NM
. http://dakota.sandia.gov/documentation.html
32.
Ben-Tal
,
A.
,
1980
, “Characterization of Pareto and Lexicographic Optimal Solutions,”
Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems
, Vol.
177
,
G.
Fandel
, and
T.
Gal
, eds.,
Springer
,
Berlin/Heidelberg
.
33.
Limleamthong
,
P.
, and
Guillén-Gosálbez
,
G.
,
2018
, “Combined Use of Bilevel Programming and Multi-Objective Optimization for Rigorous Analysis of Pareto Fronts in Sustainability Studies: Application to the Redesign of the UK Electricity Mix,”
Computer Aided Chemical Engineering
, Vol.
43
,
A.
Friedl
,
J. J.
Klemeš
,
S.
Radl
,
P. S.
Varbanov
, and
T.
Wallek
, eds.,
Elsevier
,
New York
, pp.
1099
1104
.
34.
Edgeworth
,
F. Y.
,
1881
,
“Mathematical Psychics”
,
P. Keagan
,
London
.
35.
Pareto
,
V.
,
1896
,
Cours D’Economie Politique, Vols. I and II
,
F. Rouge
,
Lausanne
.
36.
Coello Coello
,
C. A.
,
2018
, “Multi-Objective Optimization,”
Handbook of Heuristics
,
R.
Martí
,
P.
Panos
, and
M.
Resende
, eds.,
Springer
,
Cham
.
37.
Zaro
,
F.
,
2017
, “
True Multi-Objective Optimal Power Flow in a Deregulated Environment Using Intelligent Technique
,”
J. Eng. Res. Technol.
,
4
(
3
), pp.
110
118
.
38.
Min
,
B.
,
Kannan
,
K.
, and
Srinivasan
,
S.
,
2017
, “
Quick Screening of Pareto-Optimal Operating Conditions for Expanding Solvent-Steam Assisted Gravity Drainage Using Hybrid Multi-Objective Optimization Approach
,”
Energies
,
10
(
7
), p.
966
.
39.
Eiben
,
A. E.
, and
Smith
,
J. E.
,
2003
,
Introduction to Evolutionary Computing
,
Springer
,
Berlin
.
40.
Skaik
,
A. Z.
, and
Ashour
,
W.
,
2017
, “
Combining IWC and PSO to Enhance Data Clustering
,”
J. Eng. Res. Technol.
,
4
(
3
), pp.
20
42
.
41.
Saka
,
M. P.
,
Doğan
,
E.
, and
Aydogdu
,
I.
,
2013
, “Analysis of Swarm Intelligence-Based Algorithms for Constrained Optimization,”
Swarm Intelligence and Bio-Inspired Computation
,
Elsevier
,
New York
, pp.
25
48
.
42.
Motameni
,
H.
,
2016
, “
PSO for Multi-Objective Problems: Criteria for Leader Selection and Uniformity Distribution
,”
J. AI Data Min.
,
4
(
1
), pp.
67
76
.
43.
Kaveh
,
A.
,
Mahdipou Moghanni
,
R.
, and
Javadi
,
S. M.
,
2019
, “
Ground Motion Record Selection Using Multi-Objective Optimization Algorithms: A Comparative Study
,”
Period. Polytech. Civil Eng.
,
63
(
3
), pp.
812
822
.
44.
Schoenauer
,
M.
,
Deb
,
K.
,
Rudolph
,
G.
,
Yao
,
X.
,
Lutton
,
E.
,
Marelo Guervos
,
J. J.
, and
Schwefel
,
H.
,
2000
, “
Parallel Problem-Solving Nature—PPSN VI
,”
Sixth International Conference, Paris, France. Proceedings. Lecture Notes in Computer Science 1917
,
Springer
2000.
45.
Goldberg
,
D. E.
, and
Deb
,
K.
,
1991
, “A Comparison of Selection Schemes Used in Genetic Algorithms,”
Foundations of Genetic Algorithms
,
G. J. E.
Rawlins
, ed.,
Morgan Kaufmann
,
San Mateo
, pp.
69
93
.
46.
Alvarez-Benitez
,
J.
,
Everson
,
R.
, and
Fieldsend
,
J.
,
2005
, “
A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts
,”
Lect. Notes Comput. Sci.
,
3410
(
1
), pp.
459
473
.
47.
Rakhshani
,
H.
,
(2020)
,
Thesis
,
Universite de Haute-Alsace
,
France
.
48.
Avansi
,
G. D.
,
2009
, “
Use of Proxy Models in the Selection of Production Strategy and Economic Evaluation of Petroleum Fields
,”
Society of Petroleum Engineers
.
49.
Abujamous
,
H.
,
Rustom
,
R.
, and
Abukmail
,
M.
,
2015
, “
Influencing Cost Factors in Road Projects in Gaza Strip Using ANN
,”
J. Eng. Res. Technol.
,
1
(
4
), pp.
24
33
.
50.
Zubarev
,
D. I.
,
2009
, “
Pros and Cons of Applying Proxy-Models As a Substitute for Full Reservoir Simulations
,”
Society of Petroleum Engineers.
51.
Bevillon
,
D.
, and
Mohagerani
,
S.
,
2015
, “
A Miscible EOR Project in a Mature, Offshore, Carbonate Middle East Reservoir—Uncertainty Analysis With Proxy Models Based on Experimental Design of Reservoir Simulations
,”
Society of Petroleum Engineers.
52.
Haddad
,
E.
,
2016
, “
Quantities Predictor Model (QPM) Based on Artificial Neural Networks for Gaza Strip Building Contractors
,”
J. Eng. Res. Technol.
,
3
(
2
), pp.
35
43
.
53.
Mostapha
,
K. H.
,
2015
, Yarpiz, https://yarpiz.com/about
You do not currently have access to this content.