Abstract

In this study, a systematical technique has been developed to experimentally and numerically evaluate enzyme-assisted hot waterflooding performance in a heavy oil reservoir for the first time. Experimentally, an enzyme solution (i.e., a protein-based liquid catalyst) is prepared and used to displace heavy oil in sandpacked experiments at elevated temperatures, during which pressures and fluid productions are continuously monitored and measured. Numerically, reservoir simulation is performed to reproduce the experimental measurements and then extended to evaluate the performance in a targeted heavy oil reservoir. Once history matching on the experimental measurements is completed, such a calibrated model is then employed to optimize enzyme concentration, temperature, and aging time, respectively. It is found from the displacement experiments that temperature imposes a significant impact on heavy oil recovery with its appropriate range of 45–55 °C, and enzyme positively contributes to heavy oil recovery for most scenarios. Compared to the traditional waterflooding mechanisms, the enzyme-assisted hot waterflooding process shows its considerable potential in heavy oil recovery by means of reducing oil viscosity, altering wettability, and reducing interfacial tension.

References

1.
Hein
,
F. J.
,
2006
, “
Heavy Oil and Oil (Tar) Sands in North America: An Overview & Summary of Contributions
,”
Nat. Resour. Res.
,
15
(
2
), pp.
67
84
.
2.
Bayestehparvin
,
B.
,
Farouq Ali
,
S. M.
, and
Abedi
,
J.
,
2019
, “
Solvent-Based and Solvent-Assisted Recovery Processes: State of the Art
,”
SPE Reservoir Eval. Eng.
,
22
(
1
), pp.
29
49
.
3.
Boone
,
T. J.
,
Wattenbarger
,
C. C.
,
Clingman
,
S.
, and
Dickson
,
J.
,
2011
, “
An Integrated Technology Development Plan for Solvent-Based Recovery of Heavy Oil
,”
Paper No. SPE-150706-MS, Presented at the SPE Heavy Oil Conference and Exhibition
,
Kuwait City, Kuwait
,
Dec. 12–14
.
4.
Arhuoma
,
M.
,
Dong
,
M.
,
Yang
,
D.
, and
Idem
,
R.
,
2019
, “
Determination of Water-In-Oil Emulsion Viscosity in Porous Media
,”
Ind. Eng. Chem. Res.
,
48
(
15
), pp.
7092
7102
.
5.
Arhuoma
,
M.
,
Yang
,
D.
,
Dong
,
M.
,
Li
,
H.
, and
Idem
,
R.
,
2009
, “
Numerical Simulation of Displacement Mechanisms for Enhancing Heavy Oil Recovery During Alkaline Flooding
,”
Energy Fuels
,
23
(
12
), pp.
5995
6002
.
6.
Abass
,
E.
, and
Fahmi
,
A.
,
2013
, “
Experimental Investigation of Low Salinity Hot Water Injection to Enhance the Recovery of Heavy Oil Reservoirs
,”
Paper No. SPE-164768-MS, Presented at the SPE North Africa Technical Conference and Exhibition
,
Cairo, Egypt
,
Apr. 15–17
.
7.
Hussain
,
F.
,
Zeinijahromi
,
A.
,
Bedrikovetsky
,
P.
,
Badalyan
,
A.
,
Carageorgos
,
T.
, and
Cinar
,
Y.
,
2013
, “
An Experimental Study of Improved Oil Recovery Through Fines-Assisted Waterflooding
,”
J. Petroleum Sci. Eng.
,
109
, pp.
187
197
.
8.
Al Maskari
,
N. S.
,
Saeedi
,
A.
, and
Xie
,
Q.
,
2019
, “
Alcohol-Assisted Waterflooding in Carbonate Reservoirs
,”
Energy Fuels
,
33
(
11
), pp.
10651
10658
.
9.
Shi
,
Y.
,
Ding
,
Y.
,
Feng
,
Q.
, and
Yang
,
D.
,
2021
, “
Improvement of Displacement Efficiency in Heavy Oil Reservoirs With Enzyme
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
053007
.
10.
Wang
,
X.
,
Liu
,
W.
,
Shi
,
L.
,
Liang
,
X.
,
Wang
,
X.
,
Zhang
,
Y.
,
Wu
,
X.
,
Gong
,
Y.
,
Shi
,
X.
, and
Qin
,
G.
,
2022
, “
Application of a Novel Amphiphilic Polymer for Enhanced Offshore Heavy Oil Recovery: Mechanistic Study and Core Displacement Test
,”
J. Petroleum Sci. Eng.
,
215
, p.
110626
.
11.
Ding
,
Y.
,
Zheng
,
S.
,
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072904
.
12.
Sikiru
,
S.
,
Soleimani
,
H.
,
Shafie
,
A.
, and
Kozlowski
,
G.
,
2022
, “
Simulation and Experimental Investigation of Dielectric and Magnetic Nanofluids in Reduction of Oil Viscosity in Reservoir Sandstone
,”
J. Petroleum Sci. Eng.
,
209
, p.
109828
.
13.
Meng
,
B.
,
Li
,
Z.
,
Lu
,
T.
,
Du
,
L.
,
Wang
,
Y.
,
He
,
X.
, and
Zhang
,
Y.
,
2022
, “
Experimental Study on the Mechanism of Nitrogen Foam to Improve the Recovery of Bottom-Water Heavy Oil Reservoir
,”
Energy Fuels
,
36
(
7
), pp.
3457
3467
.
14.
Franco
,
C. A.
,
Franco
,
C. A.
,
Zabala
,
R. D.
,
Bahamón
,
I.
,
Forero
,
A.
, and
Cortés
,
F. B.
,
2021
, “
Field Applications of Nanotechnology in the Oil and Gas Industry: Recent Advances and Perspectives
,”
Energy Fuels
,
35
(
23
), pp.
19266
19287
.
15.
Feng
,
Q.
,
Ma
,
Z.
,
Zhou
,
L.
,
Shao
,
D.
,
Wang
,
X.
, and
Qin
,
B.
,
2009
, “
EOR Pilot Tests With Modified Enzyme-Dagang Oilfield, China
,”
SPE Reservoir Eval. Eng.
,
12
(
1
), pp.
79
87
.
16.
Ott
,
W. K.
,
Nyo
,
T.
,
Aung
,
W. N.
, and
Khaing
,
A. T.
,
2011
, “
EEOR Success in Mann Field, Myanmar. Paper No. SPE-144231-MS
,”
Presented at the SPE Enhanced Oil Recovery Conference
,
Kuala Lumpur, Malaysia
,
July 19–20
.
17.
Patel
,
J.
,
Borgohain
,
S.
,
Kumar
,
M.
,
Rangarajan
,
V.
,
Somasundaran
,
P.
, and
Sen
,
R.
,
2015
, “
Recent Developments in Microbial Enhanced Oil Recovery
,”
Renew. Sustainable Energy Rev.
,
52
, pp.
1539
1558
.
18.
Udoh
,
T. H.
, and
Evangelista
,
L.
,
2020
, “
Potentials of Enzyme Enhanced Oil Recovery: A Review
,”
Petroleum Sci. Eng.
,
4
(
2
), pp.
51
63
.
19.
Salahshoor
,
S.
,
Gomez
,
S.
, and
Fahes
,
M.
,
2019
, “
Experimental Investigation on the Application of Biological Enzymes for EOR in Shale Formations
,”
Paper No. URTEC-1117-MS, Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Denver, CO
,
July 22–24
.
20.
Khusainova
,
A.
,
2016
, “
Enhanced Oil Recovery With Application of Enzymes
,”
Ph.D. dissertation
,
Technical University of Denmark
,
Kongens Lyngby, Denmark
.
21.
Zhang
,
C.
,
2021
, “
Experimental and Numerical Evaluation of Enzyme-Assisted Hot Waterflooding Performance in A Heavy Oil Reservoir
,”
MASc thesis
,
University of Regina
,
Regina, SK
.
22.
Burnett
,
D. B.
,
1975
, “
Laboratory Studies of Biopolymer Injectivity Behavior Effectiveness of Enzyme Clarification
,”
Paper No. SPE-5372-MS, Presented at the 45th SPE Annual California Regional Meeting
,
Ventura, CA
,
Apr. 2–4
.
23.
Jain
,
T.
, and
Sharma
,
A.
,
2012
, “
New Frontiers in EOR Methodologies by Application of Enzymes
,”
Paper No. SPE-154690-MS, Presented at the SPE EOR Conference at Oil and Gas Asia
,
Muscat, Oman
,
Apr. 16–18
.
24.
Rahayyem
,
M.
,
Mostaghimi
,
P.
,
Alzahid
,
Y. A.
,
Halim
,
A.
,
Evangelista
,
L.
, and
Armstrong
,
R. T.
,
2019
, “
Enzyme Enhanced Oil Recovery EEOR: A Microfluidics Approach
,”
Paper No. SPE-195116-MS, Presented at the SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 18–21
.
25.
Morgan
,
A.
,
Akanji
,
L.
,
Udoh
,
T.
,
Mohammed
,
S.
,
Nkrumah
,
W. A.
, and
Sarkodie-Kyeremeh
,
J.
,
2020
, “
Experimental Determination of Protein Enzyme Bio-Surfactant Properties for Enhanced Oil Recovery
,”
Paper No. SPE 203599-MS, Presented at the SPE Nigeria Annual International Conference and Exhibition
,
Aug. 11–13
, Virtual.
26.
Nasiri
,
H.
,
2011
, “
Enzymes for Enhanced Oil Recovery (EOR)
,”
Ph.D. dissertation
,
University of Bergen
,
Bergen, Norway
.
27.
Liu
,
H.
, and
Zhang
,
Z.
,
2011
, “
Biology Enzyme EOR for Low Permeability Reservoirs
,”
Paper No. SPE-144281-MS, Presented at the SPE Enhanced Oil Recovery Conference
,
Kuala Lumpur, Malaysia
,
July 19–20
.
28.
Stanley
,
F. O.
,
Rae
,
P.
, and
Troncoso
,
J. C.
,
1999
, “
Single Step Enzyme Treatment Enhances Production Capacity on Horizontal Wells
,”
Paper No. SPE-52818-MS, Presented at the SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Mar. 9–11
.
29.
Cobianco
,
S.
,
Albonico
,
P.
,
Battistel
,
E.
,
Bianchi
,
D.
, and
Fornaroli
,
M.
,
2007
, “
Thermophilic Enzymes for Filtercake Removal at High Temperature
,”
Paper No. SPE-107756-MS, Presented at the SPE European Formation Damage Conference
,
Scheveningen, The Netherlands
,
May 30–June 1
.
30.
Moore
,
W. R.
,
Beall
,
B. B.
, and
Ali
,
S.
,
1996
, “
Formation Damage Removal Through the Application of Enzyme Breaker Technology
,”
Paper No. SPE-31804-MS, Presented at the SPE International Symposium on Formation Damage Control
,
Lafayette, LA
,
February 14–15
.
31.
Battistel
,
E.
,
Bianchi
,
D.
,
Fornaroli
,
M.
, and
Cobianco
,
S.
,
2011
, “
Enzymes Breakers for Viscosity Enhancing Polymers
,”
J. Petroleum Sci. Eng.
,
77
(
1
), pp.
10
17
.
32.
Barati
,
R.
,
Johnson
,
S. J.
,
McCool
,
C. S.
,
Green
,
D. W.
,
Willhite
,
G. P.
, and
Liang
,
J.
,
2012
, “
Polyelectrolyte Complex Nanoparticles for Protection and Delayed Release of Enzymes in Alkaline pH and at Elevated Temperature During Hydraulic Fracturing of Oil Wells
,”
J. Appl. Polym. Sci.
,
126
(
2
), pp.
587
592
.
33.
Bose
,
C. C.
,
Alshatti
,
B.
,
Swarts
,
L.
,
Gupta
,
A.
, and
Barati
,
R.
,
2014
, “
Dual Application of Polyelectrolyte Complex Nanoparticles as Enzyme Breaker Carriers and Fluid Loss Additives for Fracturing Fluids
,”
Paper No. SPE-71571-MS, Presented at the SPE/CSUR Unconventional Resources Conference
,
Calgary, AB
,
Canada, Sept. 30–Oct. 2
.
34.
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery in Terms of Immiscible Water-Alternating-CO2 Processes in Thin Heavy Oil Reservoirs
,”
SPE Reservoir Eval. Eng.
,
16
(
1
), pp.
60
71
.
35.
Hadia
,
N.
,
Chaudhari
,
L.
,
Mitra
,
S. K.
,
Vinjamur
,
M.
, and
Singh
,
R.
,
2008
, “
Waterflood Profiles and Oil Recovery With Vertical and Horizontal Wells
,”
Energy Sources: Part A
,
30
(
17
), pp.
1604
1618
.
36.
Fulcher
,
R. A.
,
Ertekin
,
T.
, and
Stahl
,
C. D.
,
1985
, “
Effect of Capillary Number and Its Constituents on Two-Phase Reactive Permeability Curves
,”
J. Petroleum Technol.
,
37
(
2
), pp.
249
260
.
37.
Yang
,
D.
,
Gu
,
Y.
, and
Tontiwachwuthikul
,
P.
,
2008
, “
Wettability Determination of the Crude Oil−Reservoir Brine−Reservoir Rock Systems With Dissolution of CO2 at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
22
(
4
), pp.
2362
2371
.
38.
Kozeny
,
J.
,
1927
,”
Über Kapillare Leitung des Wassers im Boden
,
136
(
2a
), pp.
271
306
, Sitzungsber Akad, Wiss., Wien.
39.
Liu
,
X.
, and
Yang
,
D.
,
2020
, “
Simultaneous Interpretation of Three-Phase Relative Permeability and Capillary Pressure for a Tight Carbonate Reservoir From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063001
.
40.
Sun
,
X. F.
, and
Mohanty
,
K. K.
,
2005
, “
Estimation of Flow Functions During Drainage Using Genetic Algorithm
,”
SPE J.
,
10
(
4
), pp.
449
457
.
41.
Liu
,
X.
,
Yang
,
D.
, and
Chen
,
A.
,
2020
, “
Simultaneous Interpretation of Relative Permeability and Capillary Pressure for a Naturally Fractured Carbonate Formation From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033001
.
42.
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s)-CO2-Heavy Oil Systems
,”
Energy Fuels
,
26
(
3
), pp.
1776
1786
.
43.
Zhang
,
Y.
,
Fan
,
Z.
,
Yang
,
D.
,
Li
,
H.
, and
Patil
,
S.
,
2017
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model With A Damped Iterative-Ensemble-Kalman-Filter Technique
,”
SPE J.
,
22
(
3
), pp.
971
984
.
44.
Wang
,
Y.
,
Kantzas
,
A.
,
Li
,
B.
,
Li
,
Z.
,
Wang
,
Q.
, and
Zhao
,
M.
,
2008
, “
New Agent for Formation-Damage Mitigation in Heavy-Oil Reservoir: Mechanism and Application
,”
Paper No. SPE-112355-MS, Presented at the SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 13–15
.
45.
Khusainova
,
A.
,
Nielsen
,
S. M.
,
Pedersen
,
H. H.
,
Woodley
,
J. M.
, and
Shapiro
,
A.
,
2015
, “
Study of Wettability of Calcite Surfaces Using Oil–Brine–Enzyme Systems for Enhanced Oil Recovery Applications
,”
J. Petroleum Sci. Eng.
,
127
, pp.
53
64
.
46.
Anderson
,
W. G.
,
1987
, “
Wettability Literature Survey Part 5: The Effects of Wettability on Relative Permeability
,”
J. Petroleum Technol.
,
39
(
11
), pp.
1453
1468
.
You do not currently have access to this content.