Abstract

In the current article, E216 airfoil blades with linearized chord of a small-scale horizontal axis wind turbine are numerically investigated to enhance the performance of the turbine. The blade is modified by including grooves on its suction side. Three-dimensional Reynold’s averaged Navier–Stokes (RANS) simulations are performed with Shear Stress Transport k–ω as a turbulence model. The computed power-coefficient results are first validated with previous measurements by the present authors on a wind turbine of 1 m rotor diameter at two wind speeds of 6 and 8 m/s. Another validation with measurements from the literature is performed via comparison of the pressure-coefficient distribution along surfaces of E216 airfoil at an angle of attack of 6 deg. Based on the successful computation, six different rotor models are numerically investigated with different numbers and locations of grooves created along the blade length, from the hub to the tip region, on the blade suction side. The lift and drag coefficients are compared for the different simulated rotor models. Furthermore, the torque coefficient, thrust coefficient, and static torque coefficient are obtained for the simulated models. It is found that the best-simulated configuration is Model 1 having one groove at 80% blade-chord length from the leading edge, with a maximum power coefficient of 0.429 at a tip-speed ratio of 4.75. The aerodynamic performance of the blades is strongly affected by the groove on the suction surface. The results show that Model 1 blade reduces the generated mean-axial force and its vibration frequency on the rotor.

References

1.
Wang
,
Y.
,
Miao
,
W.
,
Ding
,
Q.
,
Li
,
Q.
, and
Xiang
,
B.
,
2019
, “
Numerical Investigations on Control Strategies of Wake Deviation for Large Wind Turbines in an Offshore Wind Farm
,”
Ocean Eng.
,
173
, pp.
794
801
.
2.
Salimipour
,
E.
, and
Yazdani
,
S.
,
2020
, “
Improvement of Aerodynamic Performance of an Offshore Wind Turbine Blade by Moving Surface Mechanism
,”
Ocean Eng.
,
195
, p.
106710
.
3.
Mohammad
,
M.
,
Shahrokh
,
S.
, and
Nahmkeon
,
H.
,
2017
, “
Aerodynamic Performance Enhancement Analysis of Horizontal Axis Wind Turbines Using a Passive Flow Control Method via Split Blade
,”
J. Wind Eng. Ind. Aerodyn.
,
167
, pp.
148
159
.
4.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2020
, “
Experimental Study on Small Scale Horizontal Axis Wind Turbine of Analytically-Optimized Blade with Linearized Chord Twist Angle Profile
,”
Energy
,
216
, p.
119304
.
5.
Lu
,
H.
,
Yang
,
Y.
,
Guo
,
S.
,
Huang
,
Y.
,
Wang
,
H.
, and
Zhong
,
J.
,
2018
, “
Flow Control in Linear Compressor Cascades by Inclusion of Suction Side Dimples at Varying Locations
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
6
), pp.
706
721
.
6.
Zhang
,
G. Q.
,
Schlüter
,
J.
, and
Hu
,
X.
,
2017
, “
Parametric Investigation of Drag Reduction for Marine Vessels Using Air-Filled Dimpled Surfaces
,”
Ships Offshore Struct.
,
13
(
3
), pp.
244
255
.
7.
Wang
,
Y.
,
Li
,
G.
,
Shen
,
S.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2018
, “
Investigation on Aerodynamic Performance of Horizontal Axis Wind Turbine by Setting Micro-Cylinder in Front of the Blade Leading Edge
,”
Energy
,
143
, pp.
1107
1124
.
8.
Huang
,
G.-Y.
,
Shiah
,
Y. C.
,
Bai
,
C. J.
, and
Chong
,
W. T.
,
2015
, “
Experimental Study of the Protuberance Effect on the Blade Performance of a Small Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
202
211
.
9.
Gao
,
R.
,
Chen
,
K.
,
Li
,
Y.
, and
Yao
,
W.
,
2021
, “
Investigation on Aerodynamic Performance of Wind Turbine Blades Coupled With Airfoil and Herringbone Groove Structure
,”
J. Renewable Sustainable Energy
,
13
(
5
), p.
053301
.
10.
Chamorro
,
L. P.
,
Arndt
,
R. E. A.
, and
Sotiropoulos
,
F.
,
2013
, “
Drag Reduction of Large Wind Turbine Blades Through Riblets: Evaluation of Riblet Geometry and Application Strategies
,”
Renewable Energy
,
50
, pp.
1095
1105
.
11.
Bai
,
Q.
,
Bai
,
J.
,
Meng
,
X.
,
Ji
,
C.
, and
Liang
,
Y.
,
2016
, “
Drag Reduction Characteristics and Flow Field Analysis of Textured Surface
,”
Friction
,
4
(
2
), pp.
165
175
.
12.
Belamadi
,
R.
,
Djemili
,
A.
,
Ilinca
,
A.
, and
Mdouki
,
R.
,
2016
, “
Aerodynamic Performance Analysis of Slotted Airfoils for Application to Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
79
99
.
13.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2018
, “
A Parametric Study on Leading-Edge Slots Used on Wind Turbine Airfoils at Various Angles of Attack
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
43
52
.
14.
D'Alessandro
,
V.
,
Clementi
,
G.
,
Giammichele
,
L.
, and
Ricci
,
R.
,
2019
, “
Assessment of the Dimples as Passive Boundary Layer Control Technique for Laminar Airfoils Operating at Wind Turbine Blades Root Region Typical Reynolds Numbers
,”
Energy
,
170
, pp.
102
111
.
15.
Uppu
,
S. P.
,
Manisha
,
D.
,
Devi
,
G. D.
,
Chengalwa
,
P.
, and
Devi
,
B. V.
,
2018
, “
Aerodynamic Analysis of a Dragonfly
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
51
(
1
), pp.
31
413
.
16.
Elsheikh
,
M. E.
,
2021
, “
Highly Flexible Wind Turbine Blades Utilizing Corrugated Surface Hinges
,”
Coatings
,
11
(
6
), p.
635
.
17.
Dayyani
,
I.
,
Friswell
,
M. I.
,
Khodaparast
,
H. H.
, and
Woods
,
B. K. S.
,
2014
, “
The Design of a Corrugated Skin for the FishBAC Compliant Structure
,”
Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference
,
National Harbor, MD
,
Jan. 13–17
.
18.
Kharati-Koopaee
,
M.
, and
Fallahzadeh-Abarghooee
,
M.
,
2018
, “
Effect of Corrugated Skins on the Aerodynamic Performance of the Cambered Airfoils
,”
Eng. Computation.
,
35
(
3
), pp.
1567
1582
.
19.
Ke
,
W.
,
Hashem
,
I.
,
Zhang
,
W.
, and
Zhu
,
B.
,
2022
, “
Influence of Leading-Edge Tubercles on the Aerodynamic Performance of a Horizontal-Axis Wind Turbine: A Numerical Study
,”
Energy
,
239
(
15
), p.
122186
.
20.
Zhang
,
L.
,
Li
,
X.
,
Yang
,
K.
, and
Xue
,
D.
,
2016
, “
Effects of Vortex Generators on Aerodynamic Performance of Thick Wind Turbine Airfoils
,”
J. Wind Eng. Ind. Aerodyn.
,
156
, pp.
84
92
.
21.
Wang
,
H.
,
Zhang
,
B.
,
Qiu
,
Q.
, and
Xu
,
X.
,
2017
, “
Flow Control on the NREL S809 Wind Turbine Airfoil Using Vortex Generators
,”
Energy
,
118
, pp.
1210
1221
.
22.
Gao
,
L.
,
Zhang
,
H.
,
Liu
,
Y.
, and
Han
,
S.
,
2015
, “
Effects of Vortex Generators on a Blunt Trailing-Edge Airfoil for Wind Turbines
,”
Renewable Energy
,
76
, pp.
303
311
.
23.
Li
,
D.
,
Li
,
R.
,
Yang
,
C.
, and
Wang
,
X.
,
2010
, “
Effects of Surface Roughness on Aerodynamic Performance of a Wind Turbine Airfoil
,”
Asia-Pacific Power and Energy Engineering Conference
.
24.
Seo
,
S. H.
, and
Hong
,
C. H.
,
2016
, “
Performance Improvement of Airfoils for Wind Blade With the Groove
,”
Int. J. Green Energy
,
13
(
1
), pp.
34
39
.
25.
Shimizu
,
Y.
,
Imamura
,
H.
,
Matsumura
,
S.
,
Maeda
,
T.
, and
van Bussel Bussel
,
G.
,
1995
, “
Power Augmentation of a Horizontal Axis Wind Turbine Using a Mie Type Tip Vane: Velocity Distribution Around the Tip of a HAWT Blade With and Without a Mie Type Tip Vane
,”
ASME J. Sol. Energy Eng.
,
11
(
4
), pp.
297
303
.
26.
Shimizu
,
Y.
, and
Kamada
,
Y.
,
2001
, “
Studies on a Horizontal Axis Wind Turbine With Passive Pitch-Flap Mechanism (Performance and Flow Analysis Around Wind Turbine)
,”
J. Fluids Eng.
,
123
(
3
), pp.
516
522
.
27.
Hansen
,
M. O. L.
, and
Aagaard Madsen
,
H.
,
2011
, “
Review Paper on Wind Turbine Aerodynamics
,”
J. Fluids Eng.
,
133
(
11
), p.
114001
.
28.
Henao Garcia
,
S.
,
Benavides-Morán
,
A.
, and
Lopez Mejia
,
O. D.
,
2021
, “
Wake and Performance Predictions of Two- and Three-Bladed Wind Turbines Based on the Actuator Line Model
,”
J. Fluids Eng.
,
143
(
5
), p.
051206
.
29.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Computational Analysis of an Optimized Curved-Bladed Small-Scale Horizontal Axis Wind Turbine
,”
ASME J. Energy. Res. Technol.
,
143
(
6
), p.
061302
.
30.
Costa Rocha
,
P. A.
,
Barbosa Rocha
,
H.
,
Moura Carneiro
,
F. O.
,
Vieira da Silva
,
M. E.
, and
Bueno
,
V.
,
2014
, “
A K-ω SST (Shear Stress Transport) Turbulence Model Calibration A Case Study on a Small-Scale Horizontal Axis Wind Turbine
,”
Energy
,
65
, pp.
412
418
.
31.
Sudhamshu
,
A.
,
2016
, “
Numerical Study of Effect of Pitch Angle on Performance Characteristics of a HAWT
,”
Eng Sci. Technol.
,
19
(
1
), pp.
632
641
.
32.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2018
, “
Investigating the Performance of a Twisted Modified Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
182
, pp.
344
355
.
33.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2020
, “
Experimental and Theoretical Studies for Improving the Performance of a Modified Shape Savonius Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121303
.
34.
Sagol
,
E.
,
Reggio
,
M.
, and
Ilinc
,
A.
,
2012
, “
Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD
,”
Int. Sch. Res. Notices
,
2012
, p.
428671
.
35.
Menter
,
F. R.
,
1994
, “
Improved Two-Equation k-Omega Turbulence Models for Aerodynamic Flows
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
36.
Lee
,
M. H.
,
Shiah
,
Y. C.
, and
Bai
,
C. G.
,
2016
, “
Experiments and Numerical Simulations of the Rotor-Blade Performance for a Small-Scale Horizontal Axis Wind Turbine
,”
Wind Eng. Ind. Aerodyn.
,
149
, pp.
17
29
.
37.
Saad
,
A. S.
,
El-Sharkawya
,
I. I.
,
Ookawara
,
O.
, and
Ahmed
,
M.
,
2020
, “
Performance Enhancement of Twisted-Bladed Savonieus Vertical Axis Wind Turbines
,”
Energy Convers. Manage.
,
209
, p.
112673
.
38.
Maindonald
,
J.
, and
Braun
,
W. J.
,
2003
,
Data Analysis and Graphics Using R—An Example-Based Approach
, 3rd ed,
Cambridge University Press
,
Cambridge, UK
.
39.
Sreejith
,
B. K.
, and
Sathyabhama
,
A.
,
2018
, “
Numerical Study on Effect of Boundary Layer Trips on Aerodynamic Performance of E216 Airfoil
,”
Eng. Sci. Technol. Int. J.
,
21
(
1
), pp.
77
88
.
You do not currently have access to this content.