Abstract

Sustainable policy leads to partially replace fossil diesel by bio-fuels and ethanol/diesel blends. The major challenge is how to enhance miscibility of ethanol with diesel. Molecular dynamics simulation was applied to study the effects of alcohol co-solvents on miscibility of ethanol with diesel. The 1-heptanol, 1-decanol, n-butanol, and butanol isomers were selected as co-solvents. The diesel model was constructed to quantitatively characterize miscibility and obtain interaction of ethanol and diesel. The solubility parameters, structural feature, and energy properties were analyzed. The results showed that long-chain alcohol co-solvents contributed to miscibility of blends. The aromatics had more effects on miscibility than linear alkanes and cycloalkanes. Radial distribution function results showed that straight-chain alcohols or high linearity co-solvents promoted miscibility of ethanol than branched alcohols. The energy analysis revealed that the hydrogen bonding and van der Waals interaction were the main driving forces to improve miscibility, while polarization interaction had no major contribution. The hydrogen bonding dominated for short-chain alcohols, while van der Waals interaction was vital for long-chain alcohols. The coordination of hydrogen bonding and van der Waals energy in dynamic equilibrium led to the optimal miscibility.

References

1.
Gyamfi
,
B. A.
,
Ozturk
,
I.
,
Bein
,
M. A.
, and
Bekun
,
F. V. J. B.
,
2021
, “
An Investigation Into the Anthropogenic Effect of Biomass Energy Utilization and Economic Sustainability on Environmental Degradation in E7 Economies
,”
Biofuels Bioprod. Biorefining
,
15
(
3
), pp.
840
851
.
2.
Ribeiro
,
N. M.
,
Pinto
,
A. C.
,
Quintella
,
C. M.
,
da Rocha
,
G. O.
,
Teixeira
,
L. S.
,
Guarieiro
,
L. L.
,
do Carmo Rangel
,
M.
,
Veloso
,
M. C.
,
Rezende
,
M. J.
, and
Serpa da Cruz
,
R.
,
2007
, “
The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review
,”
Energy Fuels
,
21
(
4
), pp.
2433
2445
.
3.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
.
4.
Agarwal
,
A. K.
,
Jiotode
,
Y.
, and
Sharma
,
N.
,
2022
, “
Time-Resolved Endoscopic Evaluation of Spatial Temperature and Soot Distribution in a Butanol-Diesel Blend Fueled Direct Injection Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022307
.
5.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol–Dodecanol–Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
.
6.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
7.
Roy
,
M. M.
,
2008
, “
Normal Heptane-Diesel Combustion and Odorous Emissions in Direct Injection Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
110101
.
8.
De Caro
,
P. S.
,
Mouloungui
,
Z.
,
Vaitilingom
,
G.
, and
Berge
,
J. C.
,
2001
, “
Interest of Combining an Additive With Diesel–Ethanol Blends for Use in Diesel Engines
,”
Fuel
,
80
(
4
), pp.
565
574
.
9.
Can
,
Ö
,
Celikten
,
I.
, and
Usta
,
N.
,
2004
, “
Effects of Ethanol Addition on Performance and Emissions of a Turbocharged Indirect Injection Diesel Engine Running at Different Injection Pressures
,”
Energy Convers. Manage.
,
45
(
15–16
), pp.
2429
2440
.
10.
EL-Seesy
,
A. I.
,
He
,
Z.
,
Hassan
,
H.
, and
Balasubramanian
,
D.
,
2020
, “
Improvement of Combustion and Emission Characteristics of a Diesel Engine Working With Diesel/Jojoba Oil Blends and Butanol Additive
,”
Fuel
,
279
, p.
118433
.
11.
Bhattacharya
,
T.
,
Chatterjee
,
S.
, and
Mishra
,
T.
,
2004
, “
Performance of a Constant Speed CI Engine on Alcohol-Diesel Microemulsions
,”
Appl. Eng. Agric.
,
20
(
3
), pp.
253
257
.
12.
He
,
Z.
,
Liu
,
G.
,
Li
,
Z.
,
Jiang
,
C.
,
Qian
,
Y.
, and
Lu
,
X.
,
2019
, “
Comparison of Four Butanol Isomers Blended With Diesel on Particulate Matter Emissions in a Common Rail Diesel Engine
,”
J. Aerosol Sci.
,
137
, p.
105434
.
13.
Liu
,
H.
,
Hu
,
B.
, and
Jin
,
C.
,
2016
, “
Effects of Different Alcohols Additives on Solubility of Hydrous Ethanol/Diesel Fuel Blends
,”
Fuel
,
184
, pp.
440
448
.
14.
Papavasileiou
,
K. D.
,
Peristeras
,
L. D.
,
Bick
,
A.
, and
Economou
,
I. G.
,
2019
, “
Molecular Dynamics Simulation of Pure n-Alkanes and Their Mixtures at Elevated Temperatures Using Atomistic and Coarse-Grained Force Fields
,”
J. Phys. Chem. B
,
123
(
29
), pp.
6229
6243
.
15.
Barton
,
A. F. M.
,
2017
,
CRC Handbook of Solubility Parameters and Other Cohesion Parameters
, 2ed. ed.,
Routledge
,
London/New York
.
16.
Yin
,
K.
,
Zhang
,
W.
,
Liu
,
X.
,
Qian
,
Z.
, and
Mao
,
X.
,
2014
, “
Research of Mixed Biological Diesel Oil Solidifying Point and Solubility Parameters by Molecular Dynamics Simulation
,”
J. Changzhou Univ. (Nat. Sci. Ed.)
,
26
(
4
), pp.
1
5
.
17.
Gerdes
,
K.
, and
Suppes
,
G.
,
2001
, “
Miscibility of Ethanol in Diesel Fuels
,”
Ind. Eng. Chem. Res.
,
40
(
3
), pp.
949
956
.
18.
de Oliveira
,
I. P.
, and
Caires
,
A. R. L.
,
2019
, “
Molecular Arrangement in Diesel/Biodiesel Blends: A Molecular Dynamics Simulation Analysis
,”
Renewable Energy
,
140
, pp.
203
211
.
19.
Yang
,
Z.
,
Xia
,
Y.
,
Guo
,
F.
,
Xing
,
Y.
, and
Gui
,
X.
,
2020
, “
Interaction Characteristics Between Diesel and Coal With Different Hydrophilicity: Kinetic and Force Effects
,”
Sep. Purif. Technol.
,
232
, p.
115958
.
20.
Chen
,
X.
,
Hou
,
L.
,
Li
,
W.
, and
Li
,
S.
,
2018
, “
Influence of Electric Field on the Viscosity of Waxy Crude Oil and Micro Property of Paraffin: A Molecular Dynamics Simulation Study
,”
J. Mol. Liq.
,
272
, pp.
973
981
.
21.
Dodda
,
L. S.
,
Vilseck
,
J. Z.
,
Tirado-Rives
,
J.
, and
Jorgensen
,
W. L.
,
2017
, “
1.14* CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations
,”
J. Phys. Chem. B
,
121
(
15
), pp.
3864
3870
.
22.
Darden
,
T.
,
York
,
D.
, and
Pedersen
,
L.
,
1993
, “
Particle Mesh Ewald: An N⋅log (N) Method for Ewald Sums in Large Systems
,”
J. Chem. Phys.
,
98
(
12
), pp.
10089
10092
.
23.
Bussi
,
G.
,
Donadio
,
D.
, and
Parrinello
,
M.
,
2007
, “
Canonical Sampling Through Velocity Rescaling
,”
J. Chem. Phys.
,
126
(
1
), p.
014101
.
24.
Berendsen
,
H. J.
,
Postma
,
J. V.
,
Van Gunsteren
,
W. F.
,
DiNola
,
A. R. H. J.
, and
Haak
,
J. R.
,
1984
, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), pp.
3684
3690
.
25.
Parrinello
,
M.
, and
Rahman
,
A.
,
1981
, “
Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method
,”
J. Appl. Phys.
,
52
(
12
), pp.
7182
7190
.
26.
Hess
,
B.
,
Kutzner
,
C.
,
Van Der Spoel
,
D.
, and
Lindahl
,
E.
,
2008
, “
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
,”
J. Chem. Theory Comput.
,
4
(
3
), pp.
435
447
.
27.
Greenhalgh
,
D. J.
,
Williams
,
A. C.
,
Timmins
,
P.
, and
York
,
P.
,
1999
, “
Solubility Parameters as Predictors of Miscibility in Solid Dispersions
,”
J. Pharm. Sci.
,
88
(
11
), pp.
1182
1190
.
28.
Vergnes
,
B.
,
Vincent
,
M.
, and
Haudin
,
J. M.
,
1990
, “Chapter 7 Cohesive Properties and Solubility,”
Properties of Polymers
,
Elsevier
,
Netherlands
.
29.
Luzar
,
A.
,
2000
, “
Resolving the Hydrogen Bond Dynamics Conundrum
,”
J. Chem. Phys.
,
113
(
23
), pp.
10663
10675
.
You do not currently have access to this content.