Abstract

Heating, ventilation, and air-conditioning (HVAC) systems are usually an industry’s highest consumer of energy, most of which goes toward space cooling in buildings. Industrial energy-efficiency audits not only benefit manufacturers but also generate significant economic and environmental benefits to localities, states, and the nation. This article analyzes the micro- and macro scale impacts of implementing energy-efficient HVAC systems by integrating the industrial building energy data with the macroeconomic regional economic flow model. Micro-scale data include 10 years of historical energy, cost, and carbon dioxide savings achieved from energy-efficient HVAC implementation offered to manufacturers through industrial energy audits. The data were integrated into the macroeconomic modeling framework to illuminate the cascading regional economic impacts of implementing energy-efficient HVAC recommendations in manufacturing facilities. Results show that if recommendations had been implemented throughout all manufacturers in the region, $656 M energy costs would have been directly saved, 7.8 million metric tons of carbon dioxide emissions would have been avoided, and 4387 jobs could have been created, resulting in a total annual economic impact of $899 M stemming from direct, indirect, and induced impacts. The results offer insight into how industrial energy systems can be designed and provide models for how communities can accomplish a net-zero society.

References

1.
Lifset
,
R. D.
,
2014
, “
A New Understanding of the American Energy Crisis of the 1970s
,”
Hist. Soc. Res.
,
39
, pp.
22
42
.
2.
Moomaw
,
W. R.
,
1996
, “
Industrial Emissions of Greenhouse Gases
,”
Energy Policy
,
24
(
10
), pp.
951
968
.
3.
Zhou
,
L.
,
Li
,
J.
,
Li
,
F.
,
Meng
,
Q.
,
Li
,
J.
, and
Xu
,
X.
,
2016
, “
Energy Consumption Model and Energy Efficiency of Machine Tools: A Comprehensive Literature Review
,”
J. Cleaner Prod.
,
112
, pp.
3721
3734
.
4.
Andrei
,
M.
,
Thollander
,
P.
,
Pierre
,
I.
,
Gindroz
,
B.
, and
Rohdin
,
P.
,
2021
, “
Decarbonization of Industry: Guidelines Towards a Harmonized Energy Efficiency Policy Program Impact Evaluation Methodology
,”
Energy Rep.
,
7
, pp.
1385
1395
.
5.
Merabtine
,
A.
,
Maalouf
,
C.
,
Al Waheed Hawila
,
A.
,
Martaj
,
N.
, and
Polidori
,
G.
,
2018
, “
Building Energy Audit, Thermal Comfort, and IAQ Assessment of a School Building: A Case Study
,”
Build. Environ.
,
145
, pp.
62
76
.
6.
Engelsgaard
,
S.
,
Alexandersen
,
E. K.
,
Dallaire
,
J.
, and
Jradi
,
M.
,
2020
, “
IBACSA: An Interactive Tool for Building Automation and Control Systems Auditing and Smartness Evaluation
,”
Build. Environ.
,
184
, p.
107240
.
7.
Botsaris
,
P. N.
, and
Prebezanos
,
S.
,
2004
, “
A Methodology for a Thermal Energy Building Audit
,”
Build. Environ.
,
39
(
2
), pp.
195
199
.
8.
Trianni
,
A.
,
Cagno
,
E.
, and
Accordini
,
D.
,
2019
, “
Energy Efficiency Measures in Electric Motors Systems: A Novel Classification Highlighting Specific Implications in Their Adoption
,”
Appl. Energy
,
252
, p.
113481
.
9.
Backlund
,
S.
, and
Thollander
,
P.
,
2015
, “
Impact After Three Years of the Swedish Energy Audit Program
,”
Energy
,
82
, pp.
54
60
.
10.
Brophy
,
B.
,
McCormack
,
E.
,
Smith
,
W.
, and
Timoney
,
D.
,
2021
, “
Interactive, Bottom-up Model to Audit the True per-Person Energy Consumption (Direct and Embedded) of Irish Citizens per Annum
,”
Energy Rep.
,
7
, pp.
1025
1045
.
11.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Build. Environ.
,
40
(
3
), pp.
394
398
.
12.
Gomis
,
L. L.
,
Fiorentini
,
M.
, and
Daly
,
D.
,
2021
, “
Potential and Practical Management of Hybrid Ventilation in Buildings
,”
Build. Environ.
,
231
, p.
110597
.
13.
Shook
,
P.
, and
Choi
,
J.-K.
,
2022
, “
Predicting the Impact of Utility Lighting Rebate Programs on Promoting Industrial Energy Efficiency: A Machine Learning Approach
,”
Environments
,
9
(
8
), p.
100
.
14.
Tschudi
,
W.
, and
Xu
,
T.
,
2001
, “
Cleanroom Energy Benchmarking Results
,”
Proceedings of the Conference: ASHRAE 2003 Annual Meeting
,
Kansas City, MO
,
June 28–July 2
, pp.
1
9
.
15.
Tsao
,
J.-M.
,
Hu
,
S.-C.
,
Xu
,
T.
, and
Chan
,
D. Y. L.
,
2010
, “
Capturing Energy-Saving Opportunities in Make-up Air Systems for Cleanrooms of High-Technology Fabrication Plant in Subtropical Climate
,”
Energy Build.
,
42
(
11
), pp.
2005
2013
.
16.
Abdel-Hadi
,
A.
,
Salem
,
A. R.
,
Abbas
,
A. I.
,
Qandil
,
M.
, and
Amano
,
R. S.
,
2021
, “
Study of Energy Saving Analysis for Different Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052101
.
17.
Choi
,
J.-K.
,
Schuessler
,
R.
,
Ising
,
M.
,
Kelley
,
D.
, and
Kissock
,
K.
,
2018
, “
A Pathway Towards Sustainable Manufacturing for Mid-Size Manufacturers
,”
Procedia CIRP
,
69
, pp.
230
235
.
18.
Selim
,
O. M.
,
Abousabae
,
M.
,
Hasan
,
A.
, and
Amano
,
R. S.
,
2021
, “
Analysis of Energy Savings and CO2 Emission Reduction Contribution for Industrial Facilities in USA
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082303
.
19.
Loomans
,
M. G. L. C.
,
Molenaar
,
P. C. A.
,
Kort
,
H. S. M.
, and
Joosten
,
P. H. J.
,
2019
, “
Energy Demand Reduction in Pharmaceutical Cleanrooms Through Optimization of Ventilation
,”
Energy Build.
,
202
, p.
109346
.
20.
Mahajan
,
G.
,
Thompson
,
S. M.
, and
Cho
,
H.
,
2017
, “
Energy and Cost Savings Potential of Oscillating Heat Pipes for Waste Heat Recovery Ventilation
,”
Energy Rep.
,
3
, pp.
46
53
.
21.
Kalbasi
,
R.
,
Shahsavar
,
A.
, and
Afrand
,
M.
,
2020
, “
Incorporating Novel Heat Recovery Units Into an AHU for Energy Demand Reduction-Exergy Analysis
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2821
2830
.
22.
Masoso
,
O. T.
, and
Grobler
,
L. J.
,
2010
, “
The Dark Side of Occupants’ Behaviour on Building Energy Use
,”
Energy Build.
,
42
(
2
), pp.
173
177
.
23.
Baldi
,
S.
,
Korkas
,
C. D.
,
Lv
,
M.
, and
Kosmatopoulos
,
E. B.
,
2018
, “
Automating Occupant-Building Interaction via Smart Zoning of Thermostatic Loads: A Switched Self-tuning Approach
,”
Appl. Energy
,
231
, pp.
1246
1258
.
24.
Fthenakis
,
V.
,
Zhang
,
Z.
, and
Choi
,
J. K.
,
2017
, “
Cost Optimization of Decommissioning and Recycling CdTe PV Power Plants
,”
Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
,
Washington, DC
,
June 25–30
.
25.
Koo
,
C.
,
Hong
,
T.
,
Oh
,
J.
, and
Choi
,
J.-K.
,
2018
, “
Improving the Prediction Performance of the Finite Element Model for Estimating the Technical Performance of the Distributed Generation of Solar Power System in a Building Façade
,”
Appl. Energy
,
215
, pp.
41
53
.
26.
Kang
,
H.
,
Lee
,
M.
,
Hong
,
T.
, and
Choi
,
J.-K.
,
2018
, “
Determining the Optimal Occupancy Density for Reducing the Energy Consumption of Public Office Buildings: A Statistical Approach
,”
Build. Environ.
,
127
, pp.
173
186
.
27.
Balaji
,
B.
,
Xu
,
J.
,
Nwokafor
,
A.
,
Gupta
,
R.
, and
Agarwal
,
Y.
,
2013
, “
Sentinel: Occupancy Based HVAC Actuation Using Existing WiFi Infrastructure Within Commercial Buildings
,”
Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems
,
Roma, Italy
.
28.
Rocha
,
P.
,
Siddiqui
,
A.
, and
Stadler
,
M.
,
2015
, “
Improving Energy Efficiency via Smart Building Energy Management Systems: A Comparison With Policy Measures
,”
Energy Build.
,
88
, pp.
203
213
.
29.
Naji
,
A.
,
Al Tarhuni
,
B.
,
Choi
,
J.-K.
,
Alshatshati
,
S.
, and
Ajena
,
S.
,
2021
, “
Toward Cost-Effective Residential Energy Reduction and Community Impacts: A Data-Based Machine Learning Approach
,”
Energy AI
,
4
, p.
100068
.
30.
Jeoung
,
J.
,
Jung
,
S.
,
Hong
,
T.
, and
Choi
,
J.-K.
,
2022
, “
Blockchain-Based IoT System for Personalized Indoor Temperature Control
,”
Autom. Constr.
,
140
, p.
104339
.
31.
Alsehli
,
M.
,
Alzahrani
,
M.
, and
Choi
,
J.-K.
,
2019
, “
A Novel Design for Solar Integrated Multi-effect Distillation Driven by Sensible Heat and Alternate Storage Tanks
,”
Desalination
,
468
, p.
114061
.
32.
Bhagwat
,
A.
,
Teli
,
S.
,
Gunaki
,
P.
, and
Majali
,
V.
,
2015
, “
Review Paper on Energy Efficiency Technologies for Heating, Ventilation and Air Conditioning (HVAC)
,”
Int. J. Sci. Eng. Res.
,
6
(
12
), pp.
106
116
. ISSN 2229-5518
33.
Khaled
,
M.
, and
Ramadan
,
M.
,
2016
, “
Heating Fresh Air by Hot Exhaust air of HVAC Systems
,”
Case Stud. Therm. Eng.
,
8
, pp.
398
402
.
34.
Alasadi
,
H.
,
Choi
,
J.-K.
, and
Mulford
,
R. B.
,
2022
, “
Influence of Photovoltaic Shading on Rooftop Heat Transfer, Building Energy Loads, and Photovoltaic Power Output
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061011
.
35.
Ozalp
,
N.
,
2009
, “
Utilization of Heat, Power, and Recovered Waste Heat for Industrial Processes in the U.S. Chemical Industry
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022401
.
36.
Roth
,
K.
,
Dieckmann
,
J.
, and
Brodrick
,
J.
,
2007
, “
Infrared Radiant Heaters
,”
ASHRAE J.
,
49
(
6
), p.
72
. https://www.reverberray.com/wp-content/uploads/2013/01/emerging_tech_small.pdf
37.
Singh
,
G.
, and
Das
,
R.
,
2023
, “
Performance Analysis of Evaporation and Heat Wheel-Based Building Air Conditioning Systems
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032101
.
38.
Denzinger
,
C.
,
Berkemeier
,
G.
,
Winter
,
O.
,
Worsham
,
M.
,
Labrador
,
C.
,
Willard
,
K.
,
Altaher
,
A.
,
Schuleter
,
J.
,
Ciric
,
A.
, and
Choi
,
J.-K.
,
2021
, “
Toward Sustainable Refrigeration Systems: Life Cycle Assessment of a Bench-Scale Solar-Thermal Adsorption Refrigerator
,”
Int. J. Refrig.
,
121
, pp.
105
113
.
39.
Orsini
,
F.
,
Marrone
,
P.
,
Asdrubali
,
F.
,
Roncone
,
M.
, and
Grazieschi
,
G.
,
2020
, “
Aerogel Insulation in Building Energy Retrofit. Performance Testing and Cost Analysis on a Case Study in Rome
,”
Energy Rep.
,
6
, pp.
56
61
.
40.
Schiavoni
,
S.
,
D'Alessandro
,
F.
,
Bianchi
,
F.
, and
Asdrubali
,
F.
,
2016
, “
Insulation Materials for the Building Sector: A Review and Comparative Analysis
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
988
1011
.
41.
Jelle
,
B. P.
,
Gustavsen
,
A.
, and
Baetens
,
R.
,
2010
, “
The Path to the High Performance Thermal Building Insulation Materials and Solutions of Tomorrow
,”
J. Build. Phys.
,
34
(
2
), pp.
99
123
.
42.
Hu
,
F.
,
An
,
L.
,
Li
,
C.
,
Liu
,
J.
,
Ma
,
G.
,
Hu
,
Y.
,
Huang
,
Y.
,
Liu
,
Y.
,
Thundat
,
T.
, and
Ren
,
S.
,
2020
, “
Transparent and Flexible Thermal Insulation Window Material
,”
Cell Rep. Phys. Sci.
,
1
(
8
), p.
100140
.
43.
Kapp
,
S.
,
Choi
,
J.-K.
, and
Kissock
,
K.
,
2022
, “
Toward Energy-Efficient Industrial Thermal Systems for Regional Manufacturing Facilities
,”
Energy Rep.
,
8
, pp.
1377
1387
.
44.
Errigo
,
A.
,
Choi
,
J.-K.
, and
Kissock
,
K.
,
2022
, “
Techno-Economic-Environmental Impacts of Industrial Energy Assessment: Sustainable Industrial Motor Systems of Small and Medium-Sized Enterprises
,”
Sustainable Energy Technol. Assess.
,
49
, p.
101694
.
45.
McLaughlin
,
E.
,
Choi
,
J.-K.
, and
Kissock
,
K. J.
,
2021
, “
Techno-economic Impact Assessments of Energy Efficiency Improvements in the Industrial Combustion Systems
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082109
.
46.
Choi
,
J.-K.
,
Eom
,
J.
, and
McClory
,
E.
,
2018
, “
Economic and Environmental Impacts of Local Utility-Delivered Industrial Energy-Efficiency Rebate Programs
,”
Energy Policy
,
123
, pp.
289
298
.
47.
Leontief
,
W.
, and
Leontief
,
W. W.
,
1986
,
Input-Output Economics
,
University Press
,
Oxford
.
48.
Leontief
,
W. W.
,
1936
, “
Quantitative Input and Output Relations in the Economic Systems of the United States
,”
Rev. Econ. Stat.
,
18
(
3
), pp.
105
125
.
49.
Hasan
,
A.
,
Selim
,
O. M.
,
Abousabae
,
M.
,
Amano
,
R. S.
, and
Otieno
,
W.
,
2021
, “
Economic, Exergy, and Environmental Analyses of the Energy Assessments for U.S. Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112101
.
50.
IMPLAN
,
2018
, IMPLAN Group, LLC.
51.
UD-IAC
,
2021
,
Energy Analysis Software
.
52.
Server
,
F.
,
Kissock
,
K.
,
Brown
,
D.
, and
Mulqueen
,
S.
,
2011
, “
Estimating Industrial Building Energy Savings Using Inverse Simulation
,”
2011 ASHRAE Winter Conference
,
Washington, DC
.
53.
UD-IAC
,
2021
,
ISim, Inverse Simulation Method to Estimate Energy Savings, Energy Analysis Software
.
54.
UD-IAC
,
2021
,
WeaTran, Energy Analysis Software
.
56.
U.S. Energy Information Administration
,
2017
, https://www.eia.gov/environment/emissions/state/
You do not currently have access to this content.