Abstract

Spill fire is a typical fire type that endangers industrial safety. This work systematically investigates the burning characteristics of transformer oil spill fire under different fuel leakage rates and substrate tilt angles, and the fuel flow hydrodynamic parameters. According to the flame spread behavior and substrate temperature distribution, the spill fire spread process is divided into four stages and the substrate is divided into three zones. The relative difference between max burning length and stable burning length is positively correlated with the substrate tilt angle. The increase of fuel flow velocity contributes to the flame spread velocity, but the increase of fuel flow velocity and the decrease of fuel layer thickness weaken the accelerating effect of surface flow on flame spread, which leads to a decreasing trend of flame spread velocity increase. The spill fire mass burning rate is 0.161–0.358 times of pool fire, and the increase of heat loss due to fuel flow and the radiant heat loss through the fuel layer dissipated through the substrate are the main reasons for the lower mass burning rate than pool fire. The research results provide basic data and references for further research on the formation mechanism of heavy oil spill fire and the prevention and control of small-scale spill fire.

References

1.
Gottuk
,
D. T.
, and
White
,
D. A.
,
2016
,
Liquid Fuel Fires, SFPE Handbook of Fire Protection Engineering
,
Springer
,
New York
.
2.
Tomoaki
,
Nishino
, and
Yugo
,
Imazu
,
2018
, “
A Computational Model for Large-Scale Oil Spill Fires on Water in Tsunamis: Simulation of Oil Spill Fires at Kesennuma Bay in the 2011 Great East Japan Earthquake and Tsunami
,”
J. Loss Prev. Process Ind.
,
54
, pp.
37
48
.
3.
Ebrahimnia-Bajestan
,
E.
,
Tiznobaik
,
H.
,
Gheorghe
,
P.
, and
Arjmand
,
M.
,
2021
, “
Thermal Behavior of Power Transformers Filled With Waste Vegetable Oil-Based Biodiesel Under Dynamic Load
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090906.
4.
Ali
,
S. M.
,
2012
, “
A Numerical Study of Concurrent Flame Propagation Over Methanol Pool Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
4
), p.
041202.
5.
Li
,
X.
,
Chen
,
G.
, and
Zhu
,
H.
,
2016
, “
Quantitative Risk Analysis on Leakage Failure of Submarine Oil and Gas Pipelines Using Bayesian Network
,”
Process Saf. Environ. Prot.
,
103
, pp.
163
173
.
6.
Ni
,
Z.
,
Wang
,
Y.
, and
Yin
,
Z.
,
2016
, “
Relative Risk Model for Assessing Domino Effect in Chemical Process Industry
,”
Saf. Sci.
,
87
, pp.
156
166
.
7.
Li
,
L.
,
Zhai
,
X.
,
Wang
,
J.
,
Chen
,
P.
, and
Shi
,
C.
,
2021
, “
Experimental Study on Vertical Spill Fire Characteristics of Transformer Oil Under Continuous Spill Condition
,”
Process Saf. Environ. Prot.
,
156
, pp.
521
530
.
8.
Fay
,
J. A.
, and
Hoult
,
D. P.
,
1971
, “
Physical Processes in the Spread of Oil on a Water Surface
,”
Int. Oil Spill Conf. Proc.
,
1971
(
1
), pp.
21
23
.
9.
Johnson
,
D. W.
, and
Cornwell
,
J. B.
,
2007
, “
Modeling the Release, Spreading, and Burning of LNG, LPG, and Gasoline on Water
,”
J. Hazard. Mater.
,
140
(
3
), pp.
535
540
.
10.
Gagnon
,
L.
,
Carey
,
V. P.
, and
Fernandez-Pello
,
C.
,
2021
, “
Using an Artificial Neural Network to Predict Flame Spread Across Electrical Wires
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092305
.
11.
Okamoto
,
K.
,
Nakagawa
,
M.
,
Ichikawa
,
T.
,
Hagiwara
,
T.
, and
Honma
,
M.
,
2021
, “
Induced Fire Hazards by Gasoline Spills
,”
Fire Saf. J.
,
120
(
SI
), pp.
103
112
.
12.
Liu
,
Q.
,
Zhao
,
J.
,
Lv
,
Z.
,
Hongqing
,
Z.
, and
Yang
,
R.
,
2020
, “
Experimental Study on the Effect of Substrate Slope on Continuously Released Heptane Spill Fires
,”
J. Therm. Anal. Calorim.
,
140
, pp.
2497
2503
.
13.
Benfer
,
M. E.
,
2010
,
Spill and Burning Behavior of Flammable Liquids
,
University of Maryland
,
College Park, MD
.
14.
Li
,
Y.
,
2020
, “
An Experimental Study on the Burning Rate of a Continuously Released n-Heptane Spill Fire on an Open Water Surface
,”
J. Loss Prev. Process Ind.
,
63
(
10
), p.
1033
.
15.
Mealy
,
C.
,
Matthew
,
B.
, and
Dan
,
G.
,
2014
, “
Liquid Fuel Spill Fire Dynamics
,”
Fire Technol.
,
50
(
2
), pp.
419
436
.
16.
Mealy
,
C.
,
Benfer
,
M.
, and
Gottuk
,
D.
,
2011
, “
A Study of the Parameters Influencing Liquid Fuel Burning Rates
,”
Fire Saf. Sci.
,
10
, pp.
945
958
.
17.
Mealy
,
C. L.
,
Benfer
,
M. E.
, and
Gottuk
,
D. T.
,
2011
, “
Fire Dynamics and Forensic Analysis of Liquid Fuel Fires
.” Bureau of Justice Statistics.
18.
Pan
,
Y.
,
Li
,
M.
, and
Wang
,
C.
,
2020
, “
Experimental Investigation of Spilling Fire Spread Over Steady Flow n-Butanol Fuel: Effects of Flow Speed and Spreading Direction
,”
Process Saf. Prog.
,
39
(
3
), pp.
121
131
.
19.
Pan
,
Y.
,
Li
,
M.
, and
Luo
,
X.
,
2020
, “
Analysis of Heat Transfer of Spilling Fire Spread Over Steady Flow of n-Butanol Fuel
,”
Int. Commun. Heat Mass Transfer
,
116
, pp.
1
9
.
20.
Zhao
,
J.
,
Liu
,
Q.
,
Huang
,
H.
,
Yang
,
R.
, and
Zhang
,
H.
,
2017
, “
Experiments Investigating Fuel Spread Behaviors for Continuous Spill Fires on Fireproof Glass
,”
J. Fire Sci.
,
35
(
1
), pp.
80
95
.
21.
Putorti
,
A. D.
,
2001
, “
Flammable and Combustible Liquid Spill/Burn Patterns
.” Bureau of Justice Stats.
22.
Li
,
M.
,
Luo
,
Q.
, and
Ji
,
J.
,
2021
, “
Hydrodynamic Analysis and Flame Pulsation of Continuously Spilling Fire Spread Over n-Butanol Fuel Under Different Slope Angles
,”
Fire Saf. J.
,
126
.
23.
Fay
,
J. A.
,
2003
, “
Model of Spills and Fires From LNG and Oil Tankers
,”
J. Hazard. Mater.
,
96
(
2–3
), pp.
171
188
.
24.
Houghton
,
E. L.
,
2013
, “Chapter 8—Viscous Flow and Boundary Layers,”
Aerodynamics for Engineering Students
, 6th ed.,
E. L.
Houghton
, ed.,
Butterworth-Heinemann
,
Boston, MA
, pp.
479
600
.
25.
Li
,
M.
,
Wang
,
C.
,
Zhang
,
J.
,
Yang
,
S.
,
Fan
,
C.
, and
Liu
,
X.
,
2017
, “
Characteristics of Gas Phase-Controlled Flame Spread Over Liquid Fuels
,”
Appl. Therm. Eng.
,
123
, pp.
403
410
.
26.
Zhou
,
J.
,
Chen
,
G.
,
Li
,
P.
,
Chen
,
B.
,
Wang
,
C.
, and
Lu
,
S.
,
2010
, “
Analysis of Flame Spread Over Aviation Kerosene
,”
Chin. Sci. Bull.
,
55
(
17
), pp.
1822
1827
.
27.
Li
,
M.
,
Lu
,
S.
,
Guo
,
J.
,
Chen
,
R.
, and
Tsui
,
K.-L.
,
2015
, “
Flame Spread Over n-Butanol at Sub-Flash Temperature in Normal and Elevated Altitude Environments
,”
J. Therm. Anal. Calorim.
,
119
(
1
), pp.
401
409
.
28.
Li
,
L..
,
Guo
,
X.
,
Lu
,
R.
,
Chen
,
R.
, and
Shi
,
C.
,
2021
, “
Experimental Study on Horizontal Fire Spread Characteristics of Transformer Oil
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012107
.
29.
Li
,
M. H.
,
Wang
,
C.
,
Li
,
Z.
,
Yang
,
S.
,
Fukumoto
,
K.
, and
Fan
,
C.
,
2018
, “
Combustion and Flame Spreading Characteristics of Diesel Fuel With Forced Air Flows
,”
Fuel
,
216
, pp.
390
397
.
30.
Zhao
,
J.
,
Wang
,
S.
, and
Zhang
,
J.
,
2020
, “
Experimental Study on the Burning Characteristics of Transformer Oil Pool Fires
,”
Energy Fuels
,
34
(
4
), pp.
4967
4976
.
31.
Hamins
,
A.
,
Fischer
,
S. J.
, and
Kashiwagi
,
T.
,
1994
, “
Heat Feedback to the Fuel Surface in Pool Fires
,”
Combust. Sci. Technol.
,
97
(
1–3
), pp.
37
62
.
32.
Li
,
B.
,
Wan
,
H.
,
Ding
,
L.
, and
Ji
,
J.
,
2021
, “
Predicting Radiative Heat Fluxes From Two Buoyant Turbulent Diffusion Flames From Burning Propane Under Cross Wind
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
4897
4906
.
33.
Marley
,
N. A.
,
Gaffney
,
J. S.
, and
Cunningham
,
M. M.
,
1994
, “
Lambert Absorption Coefficients of Water in the Frequency Range of 3000–934 cm(−1)
,”
Appl. Opt.
,
33
(
34
), pp.
8041
8054
.
You do not currently have access to this content.