Abstract

The tightening of the exhaust emission limits and the desire to reduce fuel consumption determine the direction of research on internal combustion engines. As it is known, the leaning of the mixture in spark ignition engines generally decreases fuel consumption and NOx emission together. Due to this fact, many researchers are focusing on lean combustion. The main purpose of this study is to compare the effect of different chamber geometries on combustion parameters of a spark ignition engine operated at lean and stoichiometric mixtures. One of the most important parameters of the combustion process is cyclic variations. It defines the stability of a spark ignition engine in operating conditions. Cyclic variations are increased with the leaning of the mixture in spark ignition engines. For lean mixture, a new combustion chamber was designed and manufactured for accelerating flow motions through its sickle and bowl shape. This chamber called MAN-Ricardo (MR) type decreased burn durations in the combustion process. While the start of the ignition for MR was later, the burn duration is shorter than that of the other two geometries. Therefore, MR type reduced the cyclic variations compared to other geometries in homogenous and lean mixtures. As a result, the combustion chamber must be designed to increase the turbulence intensity for a spark ignition engine to operate stably in lean mixtures, unlike the stoichiometric mixture.

References

1.
Kubota
,
S.
,
Tanaka
,
K.
, and
Konno
,
M.
,
2014
, “
Effect of Relative Positions of Air-Fuel Mixture Distribution and Ignition on Combustion Variation in Gasoline Engine
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1824
1837
.
2.
Samuel
,
S.
,
Morrey
,
D.
,
Whelan
,
I.
, and
Hassaneen
,
A.
,
2010
, “
Combustion Characteristics and Cycle-by-Cycle Variation in a Turbocharged-Intercooled Gasoline Direct-Injected Engine
,” SAE Technical Paper, 2010-01-0348.
3.
Ma
,
F.
,
Wang
,
Y. Y.
,
Wang
,
J.
,
Ding
,
S.
,
Wang
,
Y. Y.
, and
Zhao
,
S.
,
2008
, “
Effects of Combustion Phasing, Combustion Duration, and Their Cyclic Variations on Spark-Ignition (SI) Engine Efficiency
,”
Energy Fuels
,
22
(
5
), pp.
3022
3028
.
4.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Improved Thermodynamic Model for Lean Natural Gas Spark Ignition in a Diesel Engine Using a Triple Wiebe Function
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062303
.
5.
Mehdiyev
,
R.
, and
Wolanski
,
P.
,
2000
, “
Bi-Modal Combustion Chamber for a Stratified Charge Engine
,” SAE Technical Paper, 2000-01-0196.
6.
Poulos
,
S. G.
, and
Heywood
,
J. B.
,
1983
, “
The Effect of Chamber Geometry on Spark-Ignition Engine Combustion
,” SAE Technical Paper, 830334.
7.
Hasan
,
A. O.
,
Al-Rawashdeh
,
H.
,
Al-Muhtaseb
,
A. H.
,
Abu-jrai
,
A.
,
Ahmad
,
R.
, and
Zeaiter
,
J.
,
2018
, “
Impact of Changing Combustion Chamber Geometry on Emissions, and Combustion Characteristics of a Single Cylinder SI (Spark Ignition) Engine Fueled With Ethanol/Gasoline Blends
,”
Fuel
,
231
, pp.
197
203
.
8.
Johansson
,
B.
, and
Olsson
,
K.
,
1995
, “
Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion
,”
SAE Technical Papers
,
USA
.
9.
Yan
,
B.
,
Tong
,
L.
,
Wang
,
H.
,
Zheng
,
Z.
,
Qin
,
Y.
, and
Yao
,
M.
,
2017
, “
Experimental and Numerical Investigation of the Effects of Combustion Chamber Reentrant Level on Combustion Characteristics and Thermal Efficiency of Stoichiometric Operation Natural Gas Engine With EGR
,”
Appl. Therm. Eng.
,
123
, pp.
1473
1483
.
10.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
.
11.
Garg
,
M.
, and
Ravikrishna
,
R. V.
,
2019
, “
In-Cylinder Flow and Combustion Modeling of a CNG-Fuelled Stratified Charge Engine
,”
Appl. Therm. Eng.
,
149
, pp.
425
438
.
12.
Cihan
,
Ö.
,
Doğan
,
H. E.
,
Kutlar
,
O. A.
,
Demirci
,
A.
, and
Javadzadehkalkhoran
,
M.
,
2020
, “
Evaluation of Heat Release and Combustion Analysis in Spark Ignition Wankel and Reciprocating Engine
,”
Fuel
,
261
, pp.
1
10
.
13.
Ceviz
,
M. A.
, and
Yüksel
,
F.
,
2006
, “
Cyclic Variations on LPG and Gasoline-Fuelled Lean Burn SI Engine
,”
Renew. Energy
,
31
(
12
), p.
12
.
14.
Keck
,
J. C.
,
Heywood
,
J. B.
, and
Noske
,
G.
,
1987
, “
Early Flame Development and Burning Rates in Spark Ignition Engines and Their Cyclic Variability
,” SAE Technical Paper, 870164.
15.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052203
.
16.
Zhang
,
S.
,
Duan
,
X.
,
Liu
,
Y.
,
Guo
,
G.
,
Zeng
,
H.
,
Liu
,
J.
,
Lai
,
M. C.
,
Talekar
,
A.
, and
Yuan
,
Z.
,
2019
, “
Experimental and Numerical Study the Effect of Combustion Chamber Shapes on Combustion and Emissions Characteristics in a Heavy-Duty Lean Burn SI Natural Gas Engine Coupled With Detail Combustion Mechanism
,”
Fuel
,
258
, pp.
1
14
.
17.
Jaichandar
,
S.
,
Annamalai
,
K.
, and
Arikaran
,
P.
,
2014
, “
Comparative Evaluation of Pongamia Biodiesel With Open and Re-Entrant Combustion Chambers in a DI Diesel Engine
,”
J. Autom. Eng. Technol.
,
3
(
2
), pp.
66
73
.
18.
Galloni
,
E.
,
2009
, “
Analyses About Parameters That Affect Cyclic Variation in a Spark Ignition Engine
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1131
1137
.
19.
Reyes
,
M.
,
Tinaut
,
F. V.
,
Giménez
,
B.
, and
Pérez
,
A.
,
2015
, “
Characterization of Cycle-to-Cycle Variations in a Natural Gas Spark Ignition Engine
,”
Fuel
,
140
, pp.
752
761
.
20.
Reynolds
,
C. C. O. B.
, and
Evans
,
R. L.
,
2004
, “
Improving Emissions and Performance Characteristics of Lean Burn Natural Gas Engines Through Partial Stratification
,”
Int. J. Engine Res.
,
5
(
1
), pp.
105
114
.
21.
Kutlar
,
O. A.
,
1999
, “
A New Method to Decrease the Fuel Consumption at Part Load Conditions of Four Stroke Otto Cycle (Rochas) Engine—Skip Cycle Engine
,”
Ph.D. thesis
,
Istanbul Technical University
,
Istanbul
.
22.
Tekeli
,
Ö.
,
2013
, “
Designing and Production Ignition and Injection Units of a Gasoline Engine With Skip Cycle
,”
M.S. thesis
,
İstanbul Technical University
,
Istanbul
.
23.
Lalvani
,
J. I. J. R.
,
Parthasarathy
,
M.
,
Dhinesh
,
B.
, and
Annamalai
,
K.
,
2015
, “
Experimental Investigation of Combustion, Performance and Emission Characteristics of a Modified Piston
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4519
4525
.
24.
Heywood
,
J. B.
,
2005
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
25.
Ravi
,
K.
,
Pradeep Bhasker
,
J.
,
Alexander
,
J.
, and
Porpatham
,
E.
,
2018
, “
CFD Study and Experimental Investigation of Piston Geometry Induced In-Cylinder Charge Motion on LPG Fuelled Lean Burn Spark Ignition Engine
,”
Fuel
,
213
, pp.
1
11
.
26.
Le
,
A. T.
,
Tran
,
D. Q.
,
Tran
,
T. T.
,
Hoang
,
A. T.
, and
Pham
,
V. V.
,
2020
, “
Performance and Combustion Characteristics of a Retrofitted CNG Engine Under Various Piston-Top Shapes and Compression Ratios
,”
Energy Sources Part A
,
43
(
1
), pp.
6932
6949
.
27.
Öncüoğlu
,
Ö.
,
2015
, “
Analyzing Different Combustion Chambers in Gasoline Engine With Three Dimensional Modeling
,”
M.S. thesis
,
Istanbul Technical University
,
Istanbul
.
28.
Yu
,
X.
,
Guo
,
Z.
,
He
,
L.
,
Dong
,
W.
,
Sun
,
P.
,
Du
,
Y.
,
Li
,
Z.
,
Yang
,
H.
,
Wang
,
S.
, and
Wu
,
H.
,
2019
, “
Experimental Study on Lean-Burn Characteristics of an SI Engine With Hydrogen/Gasoline Combined Injection and EGR
,”
Int. J. Hydrogen Energy
,
44
(
26
), pp.
13988
13998
.
29.
Kaul
,
B. C.
,
Finney
,
C. E.
,
Daw
,
C. S.
,
Wagner
,
R. M.
,
Edwards
,
K. D.
, and
Green
,
J. B.
,
2015
, “
A Review of Deterministic Effects in Cyclic Variability of Internal Combustion Engines
,”
Int. J. Engine Res.
,
16
(
3
), pp.
366
378
.
30.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p. 022202.
31.
Zhang
,
Y.
,
Shen
,
X.
,
Wu
,
Y.
, and
Shen
,
T.
,
2019
, “
On-Board Knock Probability Map Learning-Based Spark Advance Control for Combustion Engines
,”
Int. J. Engine Res.
,
20
(
10
), pp.
1073
1088
.
32.
Shi
,
L.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
,
Su
,
T.
, and
Wang
,
D.
,
2018
, “
Combustion and Emissions Characteristics of a S.I. Engine Fueled With Gasoline-DME Blends Under Different Spark Timings
,”
Fuel
,
211
, pp.
11
17
.
33.
Zhu
,
G. G.
,
Daniels
,
C. F.
, and
Winkelman
,
J.
,
2003
, “
MBT Timing Detection and Its Closed-Loop Control Using In-Cylinder Pressure Signal
,” SAE Technical Paper, 2003-01-32.
34.
Jeeragal
,
R.
, and
Subramanian
,
K. A.
,
2019
, “
Experimental Investigation for NOx Emission Reduction in Hydrogen Fueled Spark Ignition Engine Using Spark Timing Retardation, Exhaust Gas Recirculation and Water Injection Techniques
,”
J. Therm. Sci.
,
28
(
4
), pp.
789
800
.
35.
Brunt
,
M. F. J.
,
1980
,
The Effect of Combustion Chamber Design on the Combustion Rate in an SI Engine
,
Loughborough University
,
Loughborough
.
36.
Rufino
,
C. H.
, and
Ferreira
,
J. V.
,
2021
, “
Study on the Efficiency of a Spark-Ignition Variable Displacement and Compression Ratio Engine
,”
Int. J. Engine Res.
,
22
(
8
), pp.
2607
2621
.
37.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-in-Piston Geometry
,”
Energy Convers. Manage.
,
183
, pp.
73
83
.
38.
Demirci
,
A.
,
Doğan
,
H. E.
,
Cihan
,
Ö.
,
Akın Kutlar
,
O.
,
Mehdiyev
,
R.
, and
Arslan
,
H.
,
2017
, “
Yeni Bir Yanma Odasına Sahip Benzin Motorunda Farklı Sıkıştırma Oranlarının ve Ateşleme Avanslarının Performans ve Emisyonlara Etkisi
,”
Sak. Üniversitesi Fen Bilim. Enstitüsü Derg.
,
21
(
5
), pp.
932
942
.
39.
Tabaczynski
,
R. J.
,
1976
, “
Turbulence and Turbulent Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
2
(
3
), pp.
143
165
.
40.
Ben Houidi
,
M.
,
Sotton
,
J.
, and
Bellenoue
,
M.
,
2016
, “
Interpretation of Auto-Ignition Delays From RCM in the Presence of Temperature Heterogeneities: Impact on Combustion Regimes and Negative Temperature Coefficient Behavior
,”
Fuel
,
186
, pp.
476
495
.
41.
Hires
,
S. D.
,
Tabaczynski
,
R. J.
, and
Novak
,
J. M.
,
1978
, “
The Prediction of Ignition Delay and Combustion Intervals for a Homogeneous Charge, Spark Ignition Engine
,”
SAE Trans.
,
780232
, pp.
1053
1067
.
42.
Badawy
,
T.
,
Bao
,
X.
, and
Xu
,
H.
,
2017
, “
Impact of Spark Plug Gap on Flame Kernel Propagation and Engine Performance
,”
Appl. Energy
,
191
, pp.
311
327
.
43.
Bladh
,
H.
,
Brackmann
,
C.
,
Dahlander
,
P.
,
Denbratt
,
I.
, and
Bengtsson
,
P.-E.
,
2005
, “
Flame Propagation Visualization in a Spark-Ignition Engine Using Laser-Induced Fluorescence of Cool-Flame Species
,”
Measurement Science and Technology
,
16
(
5
), pp.
1083
1091
.
44.
Kalghatgi
,
G. T.
,
Golombok
,
M.
, and
Snowdon
,
P.
,
1995
, “
Fuel Effects on Knock, Heat Release and ‘CARS’ Temperatures in a Spark Ignition Engine
,”
Combust. Sci. Technol.
,
110–111
(
1
), pp.
209
228
.
45.
Doğan
,
H. E.
,
2019
, “
Investigation of Different Combustion Chamber Geometries With Natural Gas and Gasoline Fuel
,”
Ph.D. thesis
,
İstanbul Technical University
,
Istanbul
.
46.
Manz
,
P. W.
,
2000
,
Indiziertechnik an Verbrennungsmotoren. Technical University of Braunschweig, Institute of ICE, Lecture notes, http://www.ivb.tu-bs.de//download/IaV/Kap_01.pdf (Retrieved date: 2016); 2016. [in German]
.
47.
Allenby
,
S.
,
Chang
,
W.-C.
,
Megaritis
,
A.
, and
Wyszyński
,
M. L.
,
2001
, “
Hydrogen Enrichment: A Way to Maintain Combustion Stability in a Natural Gas Fuelled Engine With Exhaust Gas Recirculation, the Potential of Fuel Reforming
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
215
(
3
), pp.
405
418
.
48.
Arcoumanis
,
C.
,
Godwin
,
S. N.
, and
Kim
,
J. W.
,
1998
, “
Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine
,” SAE Technical Papers, 981044.
49.
Johansson
,
B.
,
1996
, “
Cycle to Cycle Variations in S.I. Engines—The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion
,” SAE Technical Paper, 962084.
50.
Ji
,
C.
, and
Wang
,
S.
,
2010
, “
Experimental Study on Combustion and Emissions Performance of a Hybrid Hydrogen–Gasoline Engine at Lean Burn Limits
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1453
1462
.
51.
Doǧan
,
H. E.
,
Kutlar
,
O. A.
,
Javadzadehkalkhoran
,
M.
, and
Demirci
,
A.
,
2019
, “
Investigation of Burn Duration and NO Emission in Lean Mixture With CNG and Gasoline
,”
Energies
,
12
(
23
), pp.
4432
4450
.
52.
Demirci
,
A.
,
2017
, “
The Effects of Different Combustion Chamber Geometries on the Performance and Emissions of an Internal Combustion Engine
,”
Ph.D. thesis
,
İstanbul Technical University
,
Istanbul
.
53.
Rassweiler
,
G. M.
, and
Withrow
,
L.
,
1938
, “
Motion Pictures of Engine Flames Correlated With Pressure Cards
,” SAE Technical Papers, SAE International.
54.
Lee
,
K.-H.
, and
Kim
,
K.
,
2001
, “
Influence of Initial Combustion in SI Engine on Following Combustion Stage and Cycle-by-Cycle Variations in Combustion Process
,”
Int. J. Autom. Technol.
,
2
(
1
), pp.
25
31
.
55.
Mantel
,
T.
,
1992
, “
Three Dimensional Study of Flame Kernel Formation Around a Spark Plug
,” SAE Technical Papers, SAE International.
56.
Amirante
,
R.
,
Distaso
,
E.
,
Tamburrano
,
P.
, and
Reitz
,
R. D.
,
2017
, “
Laminar Flame Speed Correlations for Methane, Ethane, Propane and Their Mixtures, and Natural Gas and Gasoline for Spark-Ignition Engine Simulations
,”
Int. J. Engine Res.
,
18
(
9
), pp.
951
970
.
57.
Lou
,
D.
,
Ren
,
Y.
,
Zhang
,
Y.
, and
Sun
,
X.
,
2020
, “
Study on the Effects of EGR and Spark Timing on the Combustion, Performance, and Emissions of a Stoichiometric Natural Gas Engine
,”
ACS Omega
,
5
(
41
), pp.
26763
26775
.
58.
Zhao
,
J.
,
Ma
,
F.
,
Xiong
,
X.
,
Deng
,
J.
,
Wang
,
L.
,
Naeve
,
N.
, and
Zhao
,
S.
,
2013
, “
Effects of Compression Ratio on the Combustion and Emission of a Hydrogen Enriched Natural Gas Engine Under Different Excess Air Ratio
,”
Energy
,
59
, pp.
658
665
.
59.
Dempsey
,
A. B.
,
Curran
,
S.
, and
Reitz
,
R. D.
,
2015
, “
Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline With a Cetane Improver on a Multi-Cylinder Engine
,”
SAE Int. J. Engines
,
8
(
2
), pp.
859
877
.
60.
Abbasi Atibeh
,
P.
,
Brear
,
M. J.
,
Dennis
,
P. A.
,
Orbaiz
,
P. J.
, and
Watson
,
H. C.
,
2013
, “
Lean Limit Combustion Analysis for a Spark Ignition Natural Gas Internal Combustion Engine
,”
Combust. Sci. Technol.
,
185
(
8
), pp.
1151
1168
.
61.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.
You do not currently have access to this content.