Abstract

The adsorption behaviors of multiphase fluids in coal are vital for estimating their transfer and flow mechanisms. In this study, taking the classical coal structures as instances, the impacts of maturities and moisture contents of coal on the methane adsorption capacities and thermodynamic properties were analyzed and determined by molecular simulations. Specifically, the simulated pressures were varied from 0 to 16 MPa, and three temperatures (298 K, 323 K, and 348 K) were considered. In addition, the competitive adsorption capacities of water/methane molecules were evaluated and the critical value of moisture content affecting the isosteric adsorption heat of methane was determined. Furthermore, a quantitative relationship between the gas adsorption amount and adsorption equilibrium pressure under a three-phase “solid–gas–liquid” action was established. The simulated results showed that taking the intermediate-rank coals as examples, the absolute adsorption capacities of methane molecules on different moist coals reduced by 28.3%, 35.1%, 46.9%, and 62.3%, respectively (at uniform pressure–temperature status) in comparison to their dry status. In addition, when the moisture content was lower than 1.4 wt%, the average isosteric adsorption heat remained almost stable. However, when the moisture content exceeded 1.4 wt%, the average isosteric adsorption heat increased sharply with the increase in the water content. Finally, linear function formulas yielded a good fitting accuracy range for the low- and intermediate-rank coals; in comparison, for the high-rank coal, an exponential function formula obtained a better fitting accuracy than a linear one.

References

1.
Moore
,
A.
,
2012
, “
Coalbed Methane: A Review
,”
Int. J. Coal Geol.
,
101
(
6
), pp.
36
81
.
2.
Müller
,
E. A.
,
Hung
,
F. R.
, and
Gubbins
,
K. E.
,
2000
, “
Adsorption of Water Vapor-Methane Mixtures on Activated Carbons
,”
Langmuir
,
16
(
12
), pp.
5418
5424
.
3.
Miao
,
Y.
,
Zhao
,
C.
, and
Zhou
,
G.
,
2022
, “
Gas Flowrate Evaluation in Coal Coupling the Matrix Shrinkage Effect Caused by Water Extraction
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032301
.
4.
Zhao
,
C. J.
,
Li
,
J.
,
Jin
,
Y. X.
,
Zaman
,
M.
, and
Miao
,
Y. N.
,
2021
, “
Investigation of Dynamic Pore Pressure in Shale Gas Reservoir During the Multi-fracturing and its Influence on Fault Slip
,”
J. Nat. Gas Sci. Eng.
,
95
(
2
), p.
104190
.
5.
Feng
,
D.
,
Li
,
X.
,
Wang
,
X.
,
Li
,
J.
,
Sun
,
F.
,
Sun
,
Z.
,
Zhang
,
T.
,
Li
,
P.
,
Chen
,
Y.
, and
Zhang
,
X.
,
2018
, “
Water Adsorption and its Impact on the Pore Structure Characteristics of Shale Clay
,”
Appl. Clay Sci.
,
155
, pp.
126
138
.
6.
Zou
,
M.
,
Wei
,
C.
,
Huang
,
Z.
,
Zhang
,
M.
, and
Lv
,
X.
2016
, “
Experimental Study on Identification Diffusion Pores, Permeation Pores and Cleats of Coal Samples
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021201
.
7.
Zhao
,
C. J.
,
Li
,
J.
,
Liu
,
G. H.
, and
Zhang
,
X.
,
2020
, “
Analysis of Well Stress With the Effect of Natural Fracture Nearby Wellbore During Hydraulic Fracturing in Shale Gas Wells
,”
J. Pet. Sci. Eng.
,
188
, p.
106885
.
8.
van Bergen
,
F.
,
Pagnier
,
H.
, and
Krzystolik
,
P.
,
2006
, “
Field Experiment of Enhanced Coalbed Methane-CO2 in the Upper Silesian Basin of Poland
,”
Environ. Geosci.
,
13
(
3
), pp.
201
224
.
9.
Miao
,
Y.
,
Zhao
,
C.
, and
Zhou
,
G.
,
2020
, “
New Rate-Decline Forecast Approach for Low-Permeability Gas Reservoirs With Hydraulic Fracturing Treatments
,”
J. Pet. Sci. Eng.
,
190
, p.
107112
.
10.
Sun
,
Z.
,
Shi
,
J.
,
Wu
,
K.
,
Liu
,
W.
,
Wang
,
S.
, and
Li
,
X.
,
2019
, “
A Prediction Model for Desorption Area Propagation of Coalbed Methane Wells With Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
175
, pp.
286
293
.
11.
Zhao
,
C. J.
,
Li
,
J.
,
Liu
,
G. H.
, and
Zhang
,
X.
,
2019
, “
Analysis of the Influence of Cement Sheath Failure on Sustained Casing Pressure in Shale Gas Wells
,”
J. Nat. Gas Sci. Eng.
,
66
, pp.
244
254
.
12.
Li
,
T.
,
Wu
,
C.
, and
Liu
,
Q.
,
2015
, “
Characteristics of Coal Fractures and the Influence of Coal Facies on Coalbed Methane Productivity in the South Yanchuan Block, China
,”
J. Nat. Gas Sci. Eng.
,
22
, pp.
625
632
.
13.
Zou
,
M.
,
Wei
,
C.
,
Zhang
,
M.
, and
Lv
,
X.
,
2018
, “
Quantification of Gas and Water Transfer Between Coal Matrix and Cleat Network During Drainage Process
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032905
.
14.
White
,
C.
,
Smith
,
D.
,
Jones
,
K.
,
Goodman
,
A. L.
,
Jikich
,
S. A.
,
LaCount
,
R. B.
,
DuBose
,
S. B.
,
Ozdemir
,
E.
,
Morsi
,
B. I.
, and
Schroeder
,
K. T.
,
2005
, “
Sequestration of Carbon Dioxide in Coal With Enhanced Coalbed Methane Recovery: A Review
,”
Energy Fuel
,
19
(
3
), pp.
659
724
.
15.
Pan
,
Z.
,
Connell
,
L. D.
,
Camilleri
,
M.
, and
Connelly
,
L.
,
2010
, “
Effects of Matrix Moisture on Gas Diffusion and Flow in Coal
,”
Fuel
,
89
(
11
), pp.
3207
3217
.
16.
Liu
,
J.
,
Chen
,
Z.
,
Elsworth
,
D.
,
Qu
,
H.
, and
Chen
,
D.
,
2011
, “
Interactions of Multiple Processes During CBM Extraction: A Critical Review
,”
Int. J. Coal Geol.
,
87
(
3–4
), pp.
175
189
.
17.
Miao
,
Y.
,
Zhao
,
C.
,
Wu
,
K.
, and
Li
,
X.
,
2019
, “
Analysis of Production Prediction in Shale Reservoirs: Influence of Water Film in Inorganic Matter
,”
J. Nat. Gas Sci. Eng.
,
63
, pp.
1
9
.
18.
Wang
,
F.
,
Yao
,
Y.
,
Wen
,
Z.
,
Sun
,
Q.
, and
Yuan
,
X.
,
2020
, “
Effect of Water Occurrences on Methane Adsorption Capacity of Coal: A Comparison Between Bituminous Coal and Anthracite Coal
,”
Fuel
,
266
, p.
117102
.
19.
Joubert
,
J.
,
Grein
,
C.
, and
Bienstock
,
D.
,
1973
, “
Sorption of Methane in Moist Coal
,”
Fuel
,
52
(
3
), pp.
181
185
.
20.
Krooss
,
B. M.
,
van Bergen
,
F.
,
Gensterblum
,
Y.
,
Siemons
,
N.
,
Pagnier
,
H. J. M.
, and
David
,
P.
,
2002
, “
High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals
,”
Int. J. Coal Geol.
,
51
(
2
), pp.
69
92
.
21.
Day
,
S.
,
Sakurovs
,
R.
, and
Weir
,
S.
,
2008
, “
Supercritical Gas Sorption on Moist Coals
,”
Int. J. Coal Geol.
,
74
(
3
), pp.
203
214
.
22.
Gensterblum
,
Y.
,
Merkel
,
A.
,
Busch
,
A.
, and
Krooss
,
B. M.
,
2013
, “
High-Pressure CH4 and CO2 Sorption Isotherms as a Function of Coal Maturity and the Influence of Moisture
,”
Int. J. Coal Geol.
,
118
, pp.
45
57
.
23.
Gensterblum
,
Y.
,
Busch
,
A.
, and
Krooss
,
B.
,
2014
, “
Molecular Concept and Experimental Evidence of Competitive Adsorption of H2O, CO2, and CH4, on Organic Material
,”
Fuel
,
115
(
4
), pp.
581
588
.
24.
Merkel
,
A.
,
Fink
,
R.
, and
Littke
,
R.
,
2015a
, “
The Role of Pre-adsorbed Water on Methane Sorption Capacity of Bossier and Haynesville Shales
,”
Int. J. Coal Geol.
,
147–148
(
1
), pp.
1
8
.
25.
Merkel
,
A.
,
Gensterblum
,
Y.
,
Krooss
,
B. M.
, and
Amann
,
A.
,
2015b
, “
Competitive Sorption of CH4, CO2, and H2O on Natural Coals of Different Rank
,”
Int. J. Coal Geol.
,
150–151
, pp.
181
192
.
26.
Hu
,
Y.
,
Devegowda
,
D.
,
Striolo
,
A.
,
Van Phan
,
A. T.
,
Ho
,
T. A.
,
Civan
,
F.
, and
Sigal
,
R.
,
2014
, “
Microscopic Dynamics of Water and Hydrocarbon in Shale-Kerogen Pores of Potentially Mixed-Wettability
,”
SPE J.
,
20
(
1
), pp.
112
124
.
27.
Huang
,
L.
,
Khoshnood
,
A.
, and
Firoozabadi
,
A.
,
2020
, “
Swelling of Kimmeridge Kerogen by Normal-Alkanes, Naphthenes and Aromatics
,”
Fuel
,
267
, p.
117155
.
28.
Huang
,
L.
,
Zhou
,
W.
,
Xu
,
H.
,
Wang
,
L.
,
Zou
,
J.
, and
Zhou
,
Q.
,
2021
, “
Dynamic Fluid States in Organic-Inorganic Nanocomposite: Implications for Shale Gas Recovery and CO2 Sequestration
,”
Chem. Eng. J.
,
411
, p.
128423
.
29.
Billemont
,
P.
,
Coasne
,
B.
, and
De Weireld
,
G.
,
2011
, “
An Experimental and Molecular Simulation Study of the Adsorption of Carbon Dioxide and Methane in Nanoporous Carbons in the Presence of Water
,”
Langmuir
,
27
(
3
), pp.
1015
1024
.
30.
Zhang
,
J.
,
Clennell
,
M. B.
,
Dewhurst
,
D. N.
, and
Liu
,
K.
,
2014
, “
Combined Monte Carlo and Molecular Dynamics Simulation of Methane Adsorption on Dry and Moist Coal
,”
Fuel
,
122
(
15
), pp.
186
197
.
31.
Li S
,
R.
,
Li
,
Y.
, and
Lu X
,
Q.
,
2018
, “
Molecular Simulation Study on the Effect of Water Content in Lignite on Methane Adsorption
,”
Sci. China: Phys., Mech. Astron.
,
48
(
06
), pp.
91
97
.
32.
Ettinger
,
I. L.
, and
Serpinsky
,
V. V.
,
1991
, “
On the State of Methane in Coal Seams
,”
Min. Sci. Technol.
,
13
(
3
) pp.
403
407
.
33.
Crosdale
,
P. J.
,
Moore
,
T. A.
, and
Mares
,
T. E.
,
2008
, “
Influence of Moisture Content and Temperature on Methane Adsorption Isotherm Analysis for Coals From a Low-Rank, Biogenically-Sourced Gas Reservoir
,”
Int. J. Coal Geol.
,
76
(
1–2
), pp.
166
174
.
34.
Chen
,
D.
,
Pan
,
Z. J.
,
Liu
,
J. S.
, and
Connell
,
L. D.
,
2012
, “
Modeling and Simulation of Moisture Effect on Gas Storage and Transport in Coal Seams
,”
Energy Fuels
,
26
(
3
), pp.
1695
1706
.
35.
Guo
,
H. J.
,
Cheng
,
Y. P.
,
Wang
,
L.
,
Lu
,
S.
, and
Jin
,
K.
,
2015
, “
Experimental Study on the Effect of Moisture on Low-Rank Coal Adsorption Characteristics
,”
J. Nat. Gas Sci. Eng.
,
24
, pp.
245
251
.
36.
Jiang
,
Y. F.
,
2018
, “
Study on Coupled Seepage Characteristics of Loaded Coal, Gas and Water
,”
Doctoral dissertation
,
China University of Mining and Technology
,
Beijing
.
37.
Ruppel
,
T.
,
Grein
,
C.
, and
Bienstock
,
D.
,
1974
, “
Adsorption of Methane on Dry Coal at Elevated Pressure
,”
Fuel
,
53
(
3
), pp.
152
162
.
38.
Mathews
,
J.
, and
Chaffee
,
A.
,
2012
, “
The Molecular Representations of Coal-A Review
,”
Fuel
,
96
, pp.
1
14
.
39.
Dang
,
Y.
,
Zhao
,
L.
,
Lu
,
X.
,
Xu
,
J.
,
Sang
,
P.
,
Guo
,
S.
,
Zhu
,
H.
, and
Guo
,
W.
,
2017
, “
Molecular Simulation of CO2/CH4, Adsorption in Brown Coal: Effect of Oxygen-, Nitrogen-, and Sulfur-Containing Functional Groups
,”
Appl. Surf. Sci.
,
423
, pp.
33
42
.
40.
Xiang
,
J.-H.
,
Zeng
,
F.-G.
,
Li
,
B.
,
Zhang
,
L.
,
Li
,
M.-F.
, and
Liang
,
H.-Z.
,
2013
, “
Construction of Macromolecular Structural Model of Anthracite From Chengzhuang Coal Mine and its Molecular Simulation
,”
J. Fuel Chem. Technol.
,
41
(
4
), pp.
391
399
.
41.
Rieder
,
M.
,
Crelling
,
J.
,
Šustai
,
O.
,
Drábek
,
M.
,
Weiss
,
Z.
, and
Klementová
,
M.
,
2007
, “
Arsenic in Iron Disulfides in a Brown Coal From the North Bohemian Basin, Czech Republic
,”
Int. J. Coal Geol.
,
71
(
2–3
), pp.
115
121
.
42.
Kelemen
,
S. R.
,
Afeworki
,
M.
,
Gorbaty
,
M. L.
,
Sansone
,
M.
,
Kwiatek
,
P. J.
,
Walters
,
C. C.
,
Freund
,
H.
, et al
,
2007
, “
Direct Characterization of Kerogen by X-ray and Solid-State C-13 Nuclear Magnetic Resonance Methods
,”
Energy Fuels
,
21
(
3
), pp.
1548
1561
.
43.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
44.
Gasparik
,
M.
,
Ghanizadeh
,
A.
,
Gensterblum
,
Y.
, and
Krooss
,
B. M.
,
2013
, “
‘‘Multi-temperature” Method for High-Pressure Sorption Measurements on Moist Shales
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
085116
.
45.
Zhao
,
T. Y.
,
Li
,
X. F.
,
Zhao
,
H. W.
, and
Li
,
M. F.
,
2017
, “
Molecular Simulation of Adsorption and Thermodynamic Properties on Type II Kerogen: Influence of Maturity and Moisture Content
,”
Fuel
,
190
, pp.
198
207
.
46.
Ungerer
,
P.
,
Behar
,
E.
, and
Discamps
,
D.
,
1981
, “
Tentative Calculation of the Overall Volume Expansion of Organic Matter During Hydrocarbon Genesis From Geochemistry Data. Implications for primary migration
.
Adv. Org. Geochem.
,
10
, pp.
129
135
.
47.
Mathias
,
P. M.
, and
Copeman
,
T. W.
,
1983
, “
Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept
,”
Fluid Phase Equilib.
,
13
, pp.
91
108
.
48.
Okiongbo
,
K.
,
Aplin
,
A.
, and
Larter
,
S.
,
2005
, “
Changes in Type II Kerogen Density as a Function of Maturity: Evidence From the Kimmeridge Clay Formation
,”
Energy Fuels
,
19
(
6
), pp.
2495
2499
.
49.
Mastalerz
,
M.
,
Schimmelmann
,
A.
,
Lis
,
G. P.
,
Drobniak
,
A.
, and
Stankiewicz
,
A.
,
2012
, “
Influence of Maceral Composition on Geochemical Characteristics of Immature Shale Kerogen: Insight From Density Fraction Analysis
,”
Int. J. Coal Geol.
,
103
, pp.
60
69
.
You do not currently have access to this content.