Abstract

The co-thermal chemical conversion of biomass and waste tires is an important direction for the utilization of waste resources to produce renewable energy. In this study, the product distribution and synergistic effects during the co-pyrolysis of agricultural residues and waste tire were analyzed by a pyrolyzer coupled with a gas chromatograph/mass spectrometer (Py-GC/MS). Pyrolysis and co-pyrolysis products were analyzed at 550 °C and 650 °C for maize stalk (MS), wheat straw (WS), waste tire (WT) feedstocks, as well as mixtures of wheat straw-waste tire (WS:WT mass ratio of 1:1), and maize stalk-waste tire (MS:WT mass ratio of 1:1). The results showed that the co-pyrolysis of agricultural residues and waste tire promoted the release of phenols, aldehydes, and ketone derivatives, and reduced the formation of H2 and H2O. In addition, a relatively high content of aromatic hydrocarbons was obtained at 650 °C temperature, while 550 °C was optimal when considering the formation of ketones. The results showed a synergistic effect in the co-pyrolysis of biomass and waste tire.

References

1.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review
,”
Prog. Energy Combust. Sci.
,
84
(
1
), p.
100899
.
2.
Alam
,
P.
,
Sharholy
,
M.
,
Khan
,
A. H.
,
Ahmad
,
K.
,
Alomayri
,
T.
,
Radwan
,
N.
, and
Aziz
,
A.
,
2022
, “
Energy Generation and Revenue Potential From Municipal Solid Waste Using System Dynamic Approach
,”
Chemosphere
,
299
(
1
), p.
134351
.
3.
Awasthi
,
S. K.
,
Sarsaiya
,
S.
,
Kumar
,
V.
,
Chaturvedi
,
P.
,
Sindhu
,
R.
,
Binod
,
P.
,
Zhang
,
Z.
,
Pandey
,
A.
, and
Awasthi
,
M. K.
,
2022
, “
Processing of Municipal Solid Waste Resources for a Circular Economy in China: An Overview
,”
Fuel
,
317
(
1
), p.
123478
.
4.
Manzano-Agugliaro
,
F.
,
Alcayde
,
A.
,
Montoya
,
F. G.
,
Zapata-Sierra
,
A.
, and
Gil
,
C.
,
2013
, “
Scientific Production of Renewable Energies Worldwide: An Overview
,”
Renewable Sustainable Energy Rev.
,
18
(
1
), pp.
134
143
.
5.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
6.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-Pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
7.
Yang
,
Q.
,
Zhou
,
H.
,
Bartocci
,
P.
,
Fantozzi
,
F.
,
Mašek
,
O.
,
Agblevor
,
F. A.
,
Wei
,
Z.
, et al
,
2021
, “
Prospective Contributions of Biomass Pyrolysis to China’s 2050 Carbon Reduction and Renewable Energy Goals
,”
Nat. Commun.
,
12
(
1
), p.
1698
.
8.
Xue
,
Y.
, and
Bai
,
X.
,
2018
, “
Synergistic Enhancement of Product Quality Through Fast Co-Pyrolysis of Acid Pretreated Biomass and Waste Plastic
,”
Energy Convers. Manage.
,
164
(
1
), pp.
629
638
.
9.
Martínez
,
J. D.
,
Puy
,
N.
,
Murillo
,
R.
,
García
,
T.
,
Navarro
,
M. V.
, and
Mastral
,
A. M.
,
2013
, “
Waste Tyre Pyrolysis—A Review
,”
Renewable Sustainable Energy Rev.
,
23
(
1
), pp.
179
213
.
10.
Ding
,
Z.
,
Chen
,
H.
,
Liu
,
J.
,
Cai
,
H.
,
Evrendilek
,
F.
, and
Buyukada
,
M.
,
2021
, “
Pyrolysis Dynamics of Two Medical Plastic Wastes: Drivers, Behaviors, Evolved Gases, Reaction Mechanisms, and Pathways
,”
J. Hazard. Mater.
,
402
(
1
), p.
123472
.
11.
Ahmed
,
B.
,
Kumar Tyagi
,
V.
,
Kazmi
,
A. A.
, and
Khursheed
,
A.
,
2022
, “
New Insights Into Thermal-Chemical Pretreatment of Organic Fraction of Municipal Solid Waste: Solubilization Effects, Recalcitrant Formation, Biogas Yield and Energy Efficiency
,”
Fuel
,
319
(
1
), p.
123725
.
12.
Penney
,
T. K.
,
Nahil
,
M. A.
, and
Williams
,
P. T.
,
2022
, “
Pyrolysis-Catalytic Steam/Dry Reforming of Processed Municipal Solid Waste for Control of Syngas H2:CO Ratio
,”
J. Energy Inst.
,
102
, pp.
128
142
.
13.
Hossain
,
M. S.
,
Islam
,
M. R.
,
Rahman
,
M. S.
,
Kader
,
M. A.
, and
Haniu
,
H.
,
2017
, “
Biofuel From Co-Pyrolysis of Solid Tire Waste and Rice Husk
,”
Energy Procedia
,
110
(
1
), pp.
453
458
.
14.
Zhang
,
B.
,
Zhong
,
Z.
,
Ding
,
K.
, and
Song
,
Z.
,
2015
, “
Production of Aromatic Hydrocarbons From Catalytic Co-Pyrolysis of Biomass and High Density Polyethylene: Analytical Py–GC/MS Study
,”
Fuel
,
139
(
1
), pp.
622
628
.
15.
Jin
,
W.
,
Shen
,
D.
,
Liu
,
Q.
, and
Xiao
,
R.
,
2016
, “
Evaluation of the Co-Pyrolysis of Lignin With Plastic Polymers by TG-FTIR and Py-GC/MS
,”
Polym. Degrad. Stab.
,
133
(
1
), pp.
65
74
.
16.
Mettler
,
M. S.
,
Vlachos
,
D. G.
, and
Dauenhauer
,
P. J.
,
2012
, “
Top Ten Fundamental Challenges of Biomass Pyrolysis for Biofuels
,”
Energy Environ. Sci.
,
5
(
7
), p.
7797
.
17.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
Appl. Energy
,
88
(
1
), pp.
165
174
.
18.
Chen
,
W.
,
Shi
,
S.
,
Chen
,
M.
, and
Zhou
,
X.
,
2017
, “
Fast Co-Pyrolysis of Waste Newspaper With High-Density Polyethylene for High Yields of Alcohols and Hydrocarbons
,”
Waste Manage.
,
67
(
1
), pp.
155
162
.
19.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
20.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
21.
Gu
,
J.
,
Fan
,
H.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Yuan
,
H.
, and
Chen
,
Y.
,
2020
, “
Co-Pyrolysis of Xylan and High-Density Polyethylene: Product Distribution and Synergistic Effects
,”
Fuel
,
267
(
1
), p.
116896
.
22.
Cao
,
Q.
,
Jin
,
L.
,
Bao
,
W.
, and
Lv
,
Y.
,
2009
, “
Investigations Into the Characteristics of Oils Produced From Co-Pyrolysis of Biomass and Tire
,”
Fuel Process. Technol.
,
90
(
3
), pp.
337
342
.
23.
Azizi
,
K.
,
Moshfegh Haghighi
,
A.
,
Keshavarz Moraveji
,
M.
,
Olazar
,
M.
, and
Lopez
,
G.
,
2019
, “
Co-Pyrolysis of Binary and Ternary Mixtures of Microalgae, Wood and Waste Tires Through TGA
,”
Renewable Energy
,
142
(
1
), pp.
264
271
.
24.
Wang
,
Z.
,
Burra
,
K. G.
,
Zhang
,
M.
,
Li
,
X.
,
Policella
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
Co-Pyrolysis of Waste Tire and Pine Bark for Syngas and Char Production
,”
Fuel
,
274
(
1
), p.
117878
.
25.
Xu
,
F.
,
Wang
,
B.
,
Yang
,
D.
,
Ming
,
X.
,
Jiang
,
Y.
,
Hao
,
J.
,
Qiao
,
Y.
, and
Tian
,
Y.
,
2018
, “
TG-FTIR and Py-GC/MS Study on Pyrolysis Mechanism and Products Distribution of Waste Bicycle Tire
,”
Energy Convers. Manage.
,
175
(
1
), pp.
288
297
.
26.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel
,
257
(
1
), p.
116025
.
27.
Maroufi
,
S.
,
Mayyas
,
M.
, and
Sahajwalla
,
V.
,
2017
, “
Nano-Carbons From Waste Tyre Rubber: An Insight Into Structure and Morphology
,”
Waste Manage.
,
69
(
1
), pp.
110
116
.
28.
Tang
,
Y.
,
Ma
,
X.
,
Wang
,
Z.
,
Wu
,
Z.
, and
Yu
,
Q.
,
2017
, “
A Study of the Thermal Degradation of Six Typical Municipal Waste Components in CO2 and N2 Atmospheres Using TGA-FTIR
,”
Thermochim. Acta
,
657
(
1
), pp.
12
19
.
29.
Shah
,
S. A. Y.
,
Zeeshan
,
M.
,
Farooq
,
M. Z.
,
Ahmed
,
N.
, and
Iqbal
,
N.
,
2019
, “
Co-Pyrolysis of Cotton Stalk and Waste Tire With a Focus on Liquid Yield Quantity and Quality
,”
Renewable Energy
,
130
(
1
), pp.
238
244
.
30.
Wang
,
L.
,
Chai
,
M.
,
Liu
,
R.
, and
Cai
,
J.
,
2018
, “
Synergetic Effects During Co-Pyrolysis of Biomass and Waste Tire: A Study on Product Distribution and Reaction Kinetics
,”
Bioresour. Technol.
,
268
(
1
), pp.
363
370
.
31.
Chin
,
B. L. F.
,
Yusup
,
S.
,
Al Shoaibi
,
A.
,
Kannan
,
P.
,
Srinivasakannan
,
C.
, and
Sulaiman
,
S. A.
,
2014
, “
Kinetic Studies of Co-Pyrolysis of Rubber Seed Shell With High Density Polyethylene
,”
Energy Convers. Manage.
,
87
(
6
), pp.
746
753
.
32.
Omar
,
R.
,
Idris
,
A.
,
Yunus
,
R.
,
Khalid
,
K.
, and
Aida Isma
,
M. I.
,
2011
, “
Characterization of Empty Fruit Bunch for Microwave-Assisted Pyrolysis
,”
Fuel
,
90
(
4
), pp.
1536
1544
.
33.
Fahmi
,
R.
,
Bridgwater
,
A. V.
,
Donnison
,
I.
,
Yates
,
N.
, and
Jones
,
J. M.
,
2008
, “
The Effect of Lignin and Inorganic Species in Biomass on Pyrolysis Oil Yields, Quality and Stability
,”
Fuel
,
87
(
7
), pp.
1230
1240
.
34.
Asadullah
,
M.
,
Anisur Rahman
,
M.
,
Mohsin Ali
,
M.
,
Abdul Motin
,
M.
,
Borhanus Sultan
,
M.
,
Robiul Alam
,
M.
, and
Sahedur Rahman
,
M.
,
2008
, “
Jute Stick Pyrolysis for Bio-Oil Production in Fluidized Bed Reactor
,”
Bioresour. Technol.
,
99
(
1
), pp.
44
50
.
35.
Supramono
,
D.
, and
Lusiani
,
S.
,
2016
, “
Improvement of Bio-Oil Yield and Quality in Co-Pyrolysis of Corncobs and High Density Polyethylene in a Fixed Bed Reactor at Low Heating Rate
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
162
(
1
), p.
012011
.
36.
Lu
,
Q.
,
Yang
,
X.
,
Dong
,
C.
,
Zhang
,
Z.
,
Zhang
,
X.
, and
Zhu
,
X.
,
2011
, “
Influence of Pyrolysis Temperature and Time on the Cellulose Fast Pyrolysis Products: Analytical Py-GC/MS Study
,”
J. Anal. Appl. Pyrolysis
,
92
(
2
), pp.
430
438
.
37.
Bertero
,
M.
,
Gorostegui
,
H. A.
,
Orrabalis
,
C. J.
,
Guzmán
,
C. A.
,
Calandri
,
E. L.
, and
Sedran
,
U.
,
2014
, “
Characterization of the Liquid Products in the Pyrolysis of Residual Chañar and Palm Fruit Biomasses
,”
Fuel
,
116
(
1
), pp.
409
414
.
38.
Paradela
,
F.
,
Pinto
,
F.
,
Gulyurtlu
,
I.
,
Cabrita
,
I.
, and
Lapa
,
N.
,
2009
, “
Study of the Co-Pyrolysis of Biomass and Plastic Wastes
,”
Clean Technol. Environ. Policy
,
11
(
1
), pp.
115
122
.
39.
Huang
,
H.
,
Liu
,
J.
,
Liu
,
H.
,
Evrendilek
,
F.
, and
Buyukada
,
M.
,
2020
, “
Pyrolysis of Water Hyacinth Biomass Parts: Bioenergy, Gas Emissions, and By-Products Using TG-FTIR and Py-GC/MS Analyses
,”
Energy Convers. Manage.
,
207
(
1
), p.
112552
.
40.
Islam
,
M. R.
,
Tushar
,
M. S. H. K.
, and
Haniu
,
H.
,
2008
, “
Production of Liquid Fuels and Chemicals From Pyrolysis of Bangladeshi Bicycle/Rickshaw Tire Wastes
,”
J. Anal. Appl. Pyrolysis
,
82
(
1
), pp.
96
109
.
41.
Policella
,
M.
,
Wang
,
Z.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Characteristics of Syngas From Pyrolysis and CO2-Assisted Gasification of Waste Tires
,”
Appl. Energy
,
254
(
1
), p.
113678
.
42.
Olazar
,
M.
,
Aguado
,
R.
,
Arabiourrutia
,
M.
,
Lopez
,
G.
,
Barona
,
A.
, and
Bilbao
,
J.
,
2008
, “
Catalyst Effect on the Composition of Tire Pyrolysis Products
,”
Energy Fuels
,
22
(
5
), pp.
2909
2916
.
43.
Ayanoğlu
,
A.
, and
Yumrutaş
,
R.
,
2016
, “
Production of Gasoline and Diesel Like Fuels From Waste Tire Oil by Using Catalytic Pyrolysis
,”
Energy
,
103
(
1
), pp.
456
468
.
44.
Ding
,
K.
,
Zhong
,
Z.
,
Zhang
,
B.
,
Song
,
Z.
, and
Qian
,
X.
,
2015
, “
Pyrolysis Characteristics of Waste Tire in an Analytical Pyrolyzer Coupled With Gas Chromatography/Mass Spectrometry
,”
Energy Fuels
,
29
(
5
), pp.
3181
3187
.
45.
Lopez
,
G.
,
Alvarez
,
J.
,
Amutio
,
M.
,
Mkhize
,
N. M.
,
Danon
,
B.
,
van der Gryp
,
P.
,
Görgens
,
J. F.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2017
, “
Waste Truck-Tyre Processing by Flash Pyrolysis in a Conical Spouted Bed Reactor
,”
Energy Convers. Manage.
,
142
(
1
), pp.
523
532
.
46.
Ma
,
W.
,
Rajput
,
G.
,
Pan
,
M.
,
Lin
,
F.
,
Zhong
,
L.
, and
Chen
,
G.
,
2019
, “
Pyrolysis of Typical MSW Components by Py-GC/MS and TG-FTIR
,”
Fuel
,
251
(
1
), pp.
693
708
.
47.
Xie
,
C.
,
Liu
,
J.
,
Zhang
,
X.
,
Xie
,
W.
,
Sun
,
J.
,
Chang
,
K.
,
Kuo
,
J.
, et al
,
2018
, “
Co-Combustion Thermal Conversion Characteristics of Textile Dyeing Sludge and Pomelo Peel Using TGA and Artificial Neural Networks
,”
Appl. Energy
,
212
(
1
), pp.
786
795
.
You do not currently have access to this content.