Abstract

Utilization of numerical simulations has been increased rapidly to test many innovative concepts in the field of advanced fuel technologies. Implementation of chemical compound's interaction is viable option by numerical tools. Hence in this current study, the numerical simulation has been performed to evaluate the effect of spray velocities on the mass fraction of various compounds. The conceptual numerical domain has been constructed with mixture of two inlets such as air and CH4 using ansys-cfd. In addition to the CH4, the nanoparticles were injected in the same inlet using the volume of fluid method. The fuel was injected at different velocities varied from 100 m/s to 175 m/s, under the intervals of 25 m/s. Here two sections of the domains are created, one for the oxidizers and another for the CH4 with nanoparticles. Throughout the entire trial runs, the nanoparticle concentration has been maintained constant. A series of the pictorial contours have been captured to understand the influence of the fuel impinging characteristics and reaction rates in the combustion chamber. The results revealed that CH4 injection enhances the vortices formation inside the combustion chamber. Furthermore, turbulence intensity inside the chamber is high which delays the reaction time and leads to the higher combustion indeed.

References

1.
Elumalai
,
P. V.
,
Dash
,
S. K.
,
Parthasarathy
,
M.
,
Dhineshbabu
,
N. R.
,
Balasubramanian
,
D.
,
Cao
,
D. N.
,
Truong
,
T. H.
,
Le
,
A. T.
, and
Hoang
,
A. T.
,
2022
, “
Combustion and Emission Behaviors of Dual-Fuel Premixed Charge Compression Ignition Engine Powered With n-Pentanol and Blend of Diesel/Waste Tire Oil Included Nanoparticles
,”
Fuel
,
324
, p.
124603
.
2.
Al-Kheraif
,
A. A.
,
Syed
,
A.
,
Elgorban
,
A. M.
,
Divakar
,
D. D.
,
Shanmuganathan
,
R.
, and
Brindhadevi
,
K.
,
2021
, “
Experimental Assessment of Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled by Combined Non-Edible Blends With Nanoparticles
,”
Fuel
,
295
, p.
120590
.
3.
Thanh
,
N. C.
,
Askary
,
A. E.
,
Elfasakhany
,
A.
, and
Nithya
,
S.
,
2021
, “
Exergy and Energy Analyses of the Spirulina Microalgae Blends in a Direct Injection Engine at Variable Engine Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120908
.
4.
Konur
,
O.
,
2021
, “Biodiesel and Petrodiesel Fuels: Science, Technology, Health, and the Environment,”
Biodiesel Fuels
,
CRC Press
, pp.
3
36
.
5.
Maroušek
,
J.
, and
Gavurová
,
B.
,
2022
, “
Recovering Phosphorous From Biogas Fermentation Residues Indicates Promising Economic Results
,”
Chemosphere
,
291
, p.
133008
.
6.
Karami
,
R.
,
Rasul
,
M. G.
, and
Khan
,
M. M.
,
2023
, “
An Empirical and CFD Analysis of Combustion Performance of a Diesel Engine Fueled With Tomato Seed Oil Biodiesel
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
041302
.
7.
Meher
,
L. C.
,
Sagar
,
D. V.
, and
Naik
,
S. N.
,
2006
, “
Technical Aspects of Biodiesel Production by Transesterification—A Review
,”
Renewable Sustainable Energy Rev.
,
10
(
3
), pp.
248
268
.
8.
Tan
,
S. X.
,
Lim
,
S.
,
Ong
,
H. C.
, and
Pang
,
Y. L.
,
2019
, “
State of the Art Review on Development of Ultrasound-Assisted Catalytic Transesterification Process for Biodiesel Production
,”
Fuel
,
235
, pp.
886
907
.
9.
Hoang
,
A. T.
,
2019
, “
Experimental Study on Spray and Emission Characteristics of a Diesel Engine Fueled With Preheated Bio-Oils and Diesel Fuel
,”
Energy
,
171
, pp.
795
808
.
10.
Hoang
,
A. T.
, and
Le
,
A. T.
,
2019
, “
A Core Correlation of Spray Characteristics, Deposit Formation, and Combustion of a High-Speed Diesel Engine Fueled With Jatropha Oil and Diesel Fuel
,”
Fuel
,
244
, pp.
159
175
.
11.
Sanli
,
A.
,
Yılmaz
,
I. T.
, and
Gümüş
,
M.
,
2020
, “
Assessment of Combustion and Exhaust Emissions in a Common-Rail Diesel Engine Fueled With Methane and Hydrogen/Methane Mixtures Under Different Compression Ratio
,”
Int. J. Hydrog. Energy
,
45
(
4
), pp.
3263
3283
.
12.
Belgiorno
,
G.
,
Di Blasio
,
G.
, and
Beatrice
,
C.
,
2018
, “
Parametric Study and Optimization of the Main Engine Calibration Parameters and Compression Ratio of a Methane-Diesel Dual Fuel Engine
,”
Fuel
,
222
, pp.
821
840
.
13.
Xia
,
C.
,
Brindhadevi
,
K.
,
Elfasakhany
,
A.
,
Alsehli
,
M.
, and
Tola
,
S.
,
2021
, “
Numerical Modeling of the Premixed Compression Ignition Engine for Superior Combustion and Emission Characteristics
,”
Fuel
,
306
(
3
), p.
121540
.
14.
Shao
,
D.
,
Al Obaid
,
S.
,
Alharbi
,
S. A.
,
Maroušek
,
J.
,
Sekar
,
M.
,
Gunasekar
,
P.
,
Chi
,
N. T.
,
Brindhadevi
,
K.
,
Wang
,
J.
, and
Jiang
,
D.
,
2022
, “
Prediction of the Fuel Spray Characteristics in the Combustion Chamber With Methane and TiO2 Nanoparticles Via Numerical Modeling
,”
Fuel
,
326
, p.
124820
.
15.
Subramani
,
N.
,
Sangeetha
,
M.
,
Kengaiah
,
V.
, and
Prakash
,
S.
,
2021
, “
Numerical Modeling on Dynamics of Droplet in Aircraft Wing Structure at Different Velocities
,”
Aircr. Eng. Aerosp. Technol.
,
94
(
4
), pp.
553
558
.
16.
Ramesh
,
P. T.
,
Kengaiah
,
V.
,
Gutema
,
E. M.
,
Velusamy
,
P.
, and
Balamoorthy
,
D.
,
2021
, “
Development of Cost-Effective Shock Tube Based on Experimental and Numerical Analysis
,”
Aircr. Eng. Aerosp. Technol.
,
94
(
4
), pp.
559
563
.
17.
Pichaimuthu
,
C.
, and
Swaminathan
,
G.
,
2021
, “
Rotating Flow Thorough Parallel Plates With the Various Inclined Magnetic Field Under the Influence of Hall Current
,”
Aircr. Eng. Aerosp. Technol.
,
94
(
4
), pp.
564
569
.
18.
Wang
,
Y.
, and
Wang
,
P.
,
2022
, “
Numerical Investigation on the n-Heptane Spray Flame at Hydrous Ethanol Premixed Condition
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102301
.
19.
Bari
,
S.
, and
Saad
,
I.
,
2013
, “
CFD Modeling of the Effect of Guide Vane Swirl and Tumble Device to Generate Better in-Cylinder Air Flow in a CI Engine Fuelled by Biodiesel
,”
Comput. Fluids
,
84
, pp.
262
269
.
20.
Nonaka
,
H. O.
, and
Pereira
,
F. M.
,
2016
, “
Experimental and Numerical Study of CO2 Content Effects on the Laminar Burning Velocity of Biogas
,”
Fuel
,
182
, pp.
382
390
.
21.
Fordoei
,
E. E.
,
Mazaheri
,
K.
, and
Mohammadpour
,
A.
,
2021
, “
Numerical Study on the Heat Transfer Characteristics, Flame Structure, and Pollutants Emission in the MILD Methane-Air, Oxygen-Enriched and Oxy-Methane Combustion
,”
Energy
,
218
, p.
119524
.
22.
Li
,
X.
,
Zhen
,
X.
,
Xu
,
S.
,
Wang
,
Y.
,
Liu
,
D.
, and
Tian
,
Z.
,
2021
, “
Numerical Comparative Study on Knocking Combustion of High Compression Ratio Spark Ignition Engine Fueled With Methanol, Ethanol and Methane Based on Detailed Chemical Kinetics
,”
Fuel
,
306
, p.
121615
.
23.
Fantozzi
,
F.
,
Laranci
,
P.
,
Bianchi
,
M.
,
De Pascale
,
A.
,
Pinelli
,
M.
, and
Cadorin
,
M.
,
2009
, “
CFD Simulation of a Microturbine Annular Combustion Chamber Fuelled With Methane and Biomass Pyrolysis Syngas: Preliminary Results
,”
Turbo Expo: Power for Land, Sea, and Air
,
Jan. 1
, Vol. 48838, pp.
811
822
.
24.
Zettervall
,
N.
,
Fureby
,
C.
, and
Nilsson
,
E. J.
,
2021
, “
Evaluation of Chemical Kinetic Mechanisms for Methane Combustion: A Review From a CFD Perspective
,”
Fuels
,
2
(
2
), pp.
210
240
.
You do not currently have access to this content.