Abstract

Considering that injection–production of underground gas storage (UGS) is characterized by periodic and dramatic change, effective and fast model for predicting the pressure of UGS would not only be a valuable tool to figure out pressure variety but also of great benefit in optimizing injection and production. This study proposes a practical pressure prediction procedure for UGS to adapt the imbalances between injection and production on a timely basis. In this work, a first step in establishing a novel correlativity measure algorithm to screen out the objective injector–producer wells is proposed. A continuous feature selection strategy aims at selecting and filtrating feature to form the input variables of the pressure predictive model. Eventually, the long-short term memory model is used to fit the variation of pressure. Besides, an in-depth discussion illustrates the importance of well site division and model sensitivity analysis. The predictive capability of the proposed approach is verified by a real application scenario. Experimental results reveal that predictive relative error is less than 5%, which proves that the above procedure exhibits better prediction performance. The novelty of this work is that it is a purely data-driven approach that can directly interpret conventional surface measurements into intuitive subsurface pressure parameters, ideal for field applications of UGS.

References

1.
Kim
,
T. H.
,
Park
,
K.
, and
Lee
,
K. S.
,
2016
, “
Application of Type Curves for Pressure Transient Analysis of Multiple Fractured Horizontal Wells in Shale Gas Reservoirs
,”
Int. J. Oil Gas Coal Technol.
,
12
(
4
), p.
359
.
2.
Li
,
D.
,
Zhang
,
L.
,
Wang
,
J. Y.
,
Lu
,
D.
, and
Du
,
J.
,
2016
, “
Effect of Adsorption and Permeability Correction on Transient Pressures in Organic Rich Gas Reservoirs: Vertical and Hydraulically Fractured Horizontal Wells
,”
J. Nat. Gas Sci. Eng.
,
31
, pp.
214
225
.
3.
Anifowose
,
F. A.
,
Labadin
,
J.
, and
Abdulraheem
,
A.
,
2015
, “
Ensemble Model of Non-Linear Feature Selection-Based Extreme Learning Machine for Improved Natural Gas Reservoir Characterization
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
1561
1572
.
4.
Zhu
,
L. Q.
,
Zhang
,
C.
,
Wei
,
Y.
,
Zhou
,
X. Q.
,
Huang
,
Y. Y.
, and
Zhang
,
C. M.
,
2017
, “
Inversion of the Permeability of a Tight Gas Reservoir With the Combination of a Deep Boltzmann Kernel Extreme Learning Machine and Nuclear Magnetic Resonance Logging Transverse Relaxation Time Spectrum Data
,”
Interpret. A J. Subsurf. Charact.
,
5
(
3
), pp.
341
350
.
5.
Yan
,
X.
,
Gu
,
H.
,
Xiao
,
Y.
,
Ren
,
H.
, and
Ni
,
J.
,
2019
, “
XGBoost Algorithm Applied in the Interpretation of Tight-Sand Gas Reservoir on Well Logging Data
,”
Oil Geophys. Prospect.
,
54
(
2
), pp.
447
455
.
6.
Bhattacharya
,
S.
,
Ghahfarokhi
,
P. K.
,
Carr
,
T. R.
, and
Pantaleone
,
S.
,
2019
, “
Application of Predictive Data Analytics to Model Daily Hydrocarbon Production Using Petrophysical, Geomechanical, Fiber-Optic, Completions, and Surface Data: A Case Study From the Marcellus Shale, North America
,”
J. Pet. Sci. Eng.
,
176
, pp.
702
715
.
7.
Han
,
D.
,
Jung
,
J.
, and
Kwon
,
S.
,
2020
, “
Comparative Study on Supervised Learning Models for Productivity Forecasting of Shale Reservoirs Based on a Data-Driven Approach
,”
Appl. Sci.
,
10
(
4
), p.
1267
.
8.
Wang
,
C.
,
Zhao
,
L.
,
Wu
,
S.
, and
Song
,
X.
,
2020
, “
Predicting the Surveillance Data in a Low-Permeability Carbonate Reservoir With the Machine-Learning Tree Boosting Method and the Time-Segmented Feature Extraction
,”
Energies
,
13
(
23
), p.
6307
.
9.
Li
,
X. Y.
,
Li
,
H. Q.
,
Zhou
,
J. Y.
,
He
,
X.
,
Chen
,
Y. H.
, and
Yu
,
H. Y.
,
2011
, “
Identification of the Quaternary Low Gas-Saturation Reservoirs in the Sanhu Area of the Qaidam Basin, China
,”
Pet. Sci.
,
8
(
1
), pp.
49
54
.
10.
Ibrahim
,
A. F.
,
Elkatatny
,
S.
, and
Al Ramadan
,
M.
,
2022
, “
Prediction of Water Saturation in Tight Gas Sandstone Formation Using Artificial Intelligence
,”
ACS Omega
,
7
(
1
), pp.
215
222
.
11.
Qian
,
K. R.
,
He
,
Z. L.
,
Liu
,
X. W.
, and
Chen
,
Y. Q.
,
2018
, “
Intelligent Prediction and Integral Analysis of Shale Oil and Gas Sweet Spots
,”
Pet. Sci.
,
15
(
4
), pp.
744
755
.
12.
Gowida
,
A.
,
Ibrahim
,
A. F.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2022
, “
New Empirical Correlations to Estimate the Least Principal Stresses Using Conventional Logging Data
,”
ACS Omega
,
7
(
16
), pp.
13507
13519
.
13.
Nwachukwu
,
A.
,
Jeong
,
H.
,
Pyrcz
,
M.
, and
Lake
,
L. W.
,
2018
, “
Fast Evaluation of Well Placements in Heterogeneous Reservoir Models Using Machine Learning
,”
J. Pet. Sci. Eng.
,
163
, pp.
463
475
.
14.
Liu
,
W.
,
Liu
,
W. D.
, and
Gu
,
J.
,
2020
, “
A Machine Learning Method to Infer Inter-Well Connectivity Using Bottom-Hole Pressure Data
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103007
.
15.
Zhang
,
R.
,
Nie
,
F. P.
,
Li
,
X. L.
, and
Wei
,
X.
,
2019
, “
Feature Selection With Multi-View Data: A Survey
,”
Inf. Fusion
,
50
, pp.
158
167
.
16.
Ahmadi
,
M. A.
, and
Chen
,
Z.
,
2019
, “
Machine Learning Models to Predict Bottom Hole Pressure in Multi-Phase Flow in Vertical Oil Production Wells
,”
Can. J. Chem. Eng.
,
97
(
11
), pp.
2928
2940
.
17.
Yu
,
G.
,
Xu
,
F.
,
Cui
,
Y.
,
Li
,
X. L.
,
Kang
,
C. J.
,
Lu
,
C.
,
Li
,
S. Y.
,
Bai
,
L.
, and
Du
,
S.
,
2020
, “
A New Method of Predicting the Saturation Pressure of Oil Reservoir and Its Application
,”
Int. J. Hydrogen Energy
,
45
(
55
), pp.
30244
30253
.
18.
Khamehchi
,
E.
, and
Bemani
,
A.
,
2020
, “
Prediction of Pressure in Different Two-Phase Flow Conditions: Machine Learning Applications
,”
Measurement
,
173
, p.
108665
.
19.
Liang
,
H. B.
,
Liu
,
G.
,
Zou
,
J.
,
Bai
,
J.
, and
Jiang
,
Y. J.
,
2021
, “
Research on Calculation Model of Bottom of the Well Pressure Based on Machine Learning
,”
Future Gener. Comput. Syst.
,
124
(
6
), pp.
80
90
.
20.
Ali
,
A.
,
2021
, “
Data-Driven Based Machine Learning Models for Predicting the Deliverability of Underground Natural Gas Storage in Salt Caverns
,”
Energy
,
229
, p.
120648
.
21.
Li
,
H.
,
Wan
,
X.
,
Ye
,
L.
, and
Gao
,
S.
,
2014
, “
Dynamic Time Warping Based on Cubic Spline Interpolation for Time Series Data Mining
,”
2014 IEEE International Conference on Data Mining Workshop
,
Shenzhen, China
,
Dec. 14
, pp.
19
26
.
22.
Li
,
H.
, and
Wang
,
C.
,
2019
, “
Similarity Measure Based on Incremental Warping Window for Time Series Data Mining
,”
IEEE Access
,
7
, pp.
3909
3917
.
23.
Cowling
,
M.
, and
Sitte
,
R.
,
2003
, “
Comparison of Techniques for Environmental Sound Recognition
,”
Pattern Recognit. Lett.
,
24
(
15
), pp.
2895
2907
.
24.
Ferrer
,
C.
,
Torres
,
D.
, and
Hernandez-Diaz
,
M. E.
,
2010
, “
Using Dynamic Time Warping of t0 Contours in the Evaluation of Cycle-to-Cycle Pitch Detection Algorithms
,”
Pattern Recognit. Lett.
,
31
(
6
), pp.
517
522
.
25.
Akl
,
A.
, and
Valaee
,
S.
,
2010
, “
Accelerometer-Based Gesture Recognition Via Dynamic-Time Warping, Affinity Propagation, & Compressive Sensing
,”
IEEE International Conference on Acoustics Speech & Signal Processing
,
Dallas, TX
,
Mar. 15–19
, pp.
2270
2273
.
26.
Bosco
,
A.
,
Bruna
,
A.
,
Battiato
,
S.
,
Bella
,
G.
, and
Puglisi
,
G.
,
2008
, “
Digital Video Stabilization Through Curve Warping Techniques
,”
IEEE Trans. Consum. Electron.
,
54
(
2
), pp.
220
224
.
27.
Tomasi
,
G.
,
Berg
,
F. V. D.
, and
Andersson
,
C.
,
2004
, “
Correlation Optimized Warping and Dynamic Time Warping as Preprocessing Methods for Chromatographic Data
,”
J. Chemom.
,
18
(
5
), pp.
231
241
.
28.
Li
,
H.
,
2015
, “
On-Line and Dynamic Time Warping for Time Series Data Mining
,”
Int. J. Mach. Learn. Cybern.
,
6
(
1
), pp.
145
153
.
29.
Palazon-Gonzalez
,
V.
, and
Marzal
,
A.
,
2012
, “
On the Dynamic Time Warping of Cyclic Sequences for Shape Retrieval
,”
Image Vis. Comput.
,
30
(
12
), pp.
978
990
.
30.
Que
,
Z. J.
, and
Xu
,
Z. G.
,
2019
, “
A Data-Driven Health Prognostics Approach for Steam Turbines Based on XGBoost and DTW
,”
IEEE Access
,
7
, pp.
93131
93138
.
31.
Reif
,
M.
, and
Shafait
,
F.
,
2014
, “
Efficient Feature Size Reduction Via Predictive Forward Selection
,”
Pattern Recognit.
,
47
(
4
), pp.
1664
1673
.
32.
Zhang
,
L. X.
,
Wang
,
J. X.
,
Zhao
,
Y. N.
, and
Yang
,
Z. H.
,
2003
, “
A Novel Hybrid Feature Selection Algorithm: Using ReliefF Estimation for GA-Wrapper Search
,”
International Conference on Machine Learning & Cybernetics
,
Xi'an, China
,
Nov. 2–5
, pp.
380
384
.
33.
Liu
,
X. Y.
,
Liang
,
Y.
,
Wang
,
S.
,
Yang
,
Z. Y.
, and
Ye
,
H. S.
,
2018
, “
A Hybrid Genetic Algorithm With Wrapper-Embedded Approaches for Feature Selection
,”
IEEE Access
,
6
, pp.
22863
22874
.
34.
Chen
,
C. W.
,
Tsai
,
Y. H.
,
Chang
,
F. R.
, and
Lin
,
W. C.
,
2020
, “
Ensemble Feature Selection in Medical Datasets: Combining Filter, Wrapper, and Embedded Feature Selection Results
,”
Expert Syst.
,
37
(
5
), p.
e12553
.
35.
Chandrashekar
,
G.
, and
Sahin
,
F.
,
2014
, “
A Survey on Feature Selection Methods
,”
Comput. Electr. Eng.
,
40
(
1
), pp.
16
28
.
36.
Zhang
,
H.
, and
Tan
,
Y.
,
2019
, “
Implement Intelligent Dynamic Analysis of Bottom-Hole Pressure With Naive Bayesian Models
,”
Multimed. Tools Appl.
,
78
(
21
), pp.
29805
29821
.
37.
Wang
,
Y. Y.
, and
Li
,
J.
,
2008
, “
Feature-Selection Ability of the Decision-Tree Algorithm and the Impact of Feature-Selection/Extraction on Decision-Tree Results Based on Hyperspectral Data
,”
Int. J. Remote Sens.
,
29
(
10
), pp.
2993
3010
.
38.
Zhou
,
H. F.
,
Zhang
,
J. W.
,
Zhou
,
Y. Q.
,
Guo
,
X. J.
, and
Ma
,
Y. M.
,
2021
, “
A Feature Selection Algorithm of Decision Tree Based on Feature Weight
,”
Expert Syst. Appl.
,
164
, p.
113842
.
39.
Rogers
,
J. D.
, and
Gunn
,
S. R.
,
2005
, “
Identifying Feature Relevance Using a Random Forest
,”
SLSFS 2005: Subspace, Latent Structure and Feature Selection
,
Bohinj, Slovenia
,
Feb. 23–25
, pp.
173
184
.
40.
Yao
,
D. J.
,
Yang
,
J.
, and
Zhan
,
X. J.
,
2014
, “
Feature Selection Algorithm Based on Random Forest
,”
J. Jilin Univ. (Eng. Technol. Ed.)
,
44
(
1
), pp.
137
141
.
41.
Shi
,
X.
,
Wong
,
Y. D.
,
Li
,
Z. F.
,
Palanisamy
,
C.
, and
Chai
,
C.
,
2019
, “
A Feature Learning Approach Based on XGBoost for Driving Assessment and Risk Prediction
,”
Accid. Anal. Prev.
,
129
, pp.
170
179
.
42.
Yu
,
L.
, and
Liu
,
H.
,
2004
, “
Efficient Feature Selection Via Analysis of Relevance and Redundancy
,”
J. Mach. Learn. Res.
,
5
(
12
), pp.
1205
1224
.
43.
Gopika
,
N.
, and
Mkme
,
A.
,
2019
, “
Correlation Based Feature Selection Algorithm for Machine Learning
,”
2018 3rd International Conference on Communication and Electronics Systems (ICCES)
,
Coimbatore, India
,
Oct. 15–16
, pp.
692
695
.
44.
Gers
,
F. A.
,
Schmidhuber
,
J.
, and
Cummins
,
F.
,
2000
, “
Learning to Forget: Continual Prediction With LSTM
,”
Neural Comput.
,
12
(
10
), pp.
2451
2471
.
45.
Monner
,
D.
, and
Reggia
,
J. A.
,
2012
, “
A Generalized LSTM-Like Training Algorithm for Second-Order Recurrent Neural Networks
,”
Neural Netw.
,
25
, pp.
70
83
.
46.
Peng
,
L.
,
Zhu
,
Q.
,
Lv
,
S. X.
, and
Wang
,
L.
,
2020
, “
Effective Long Short-Term Memory With Fruit Fly Optimization Algorithm for Time Series Forecasting
,”
Soft Comput.
,
24
(
19
), pp.
15059
15079
.
You do not currently have access to this content.