Abstract

Heating development has become the main development mode of medium- to low-maturity shale oil. In this study, the thermodynamic mathematical models of flow and heating development of organic matter, inorganic matter, hydraulic fracture, and natural fracture are established based on the embedded discrete fracture model (EDFM). A model for calculating the apparent permeability is established based on the fractal theory considering the effect of adsorption and slippage of fluid in shale pores. The mathematical model is solved by the finite volume method. The results show that improving formation temperature can increase the shale oil production. When the temperature increases from 338 K to 500 K, the cumulative production of shale oil can increase by 40.34%. The more natural fractures are, the greater the cumulative production of shale oil is. As the half-length of hydraulic fracture increases, the cumulative production of shale oil increases. When there is greater thermal conductivity and a decrease in the heat capacity of the matrix, the formation area affected by the thermal effect is enlarged and the cumulative oil production increases. There is a negative correlation between the shale oil production and the proportion of pore volume of organic matter. Through the study of the influencing factors of shale oil heating development, characteristics of shale oil production under different fracture and matrix parameters are clarified, and the optimal parameters under different influencing factors are obtained and a significant theoretical basis for shale oil heating development is achieved.

References

1.
Cai
,
J.
,
Lin
,
D.
,
Singh
,
H.
,
Wei
,
W.
, and
Zhou
,
S.
,
2018
, “
Shale gas Transport Model in 3D Fractal Porous Media With Variable Pore Sizes
,”
Mar. Petrol. Geol.
,
98
, pp.
437
447
.
2.
Hou
,
L.
,
Luo
,
X.
,
Mi
,
J.
,
Zhang
,
Y.
,
Lin
,
S.
,
Liao
,
F.
,
Pang
,
Z.
, and
Yu
,
Z.
,
2022
, “
Characteristics of Oil and Gas Produced by In Situ Heating of Shale: A Case Study of the Chang 7 Member, Ordos Basin, China
,”
Energy Fuels
,
36
(
3
), pp.
1429
1440
.
3.
Fowle
,
D.
, and
Vinega
,
J.
,
2009
, “
Oil Shale ICP-Colorado Field Pilots
,”
SPE
,
121164
, pp.
270
284
.
4.
Burnham
,
A. K.
, and
Mcconaghy
,
J. R.
,
2014
, “
Semi-Open Pyrolysis of Oil Shale From the Garden Gulch Member of the Green River Formation
,”
Energy Fuel
,
28
(
12
), pp.
7426
7439
.
5.
Speight
,
G.
,
2012
,
Shale Oil Production Processes
,
Gulf Professional Publishing
,
Oxford
.
6.
Zhang
,
S.
,
Mi
,
J.
, and
He
,
K.
,
2013
, “
Synthesis of Hydrocarbon Gases From Four Different Carbon Sources and Hydrogen Gas Using a Gold Tube System by Fischer Tropsch Method
,”
Chem. Geol.
,
349
(
350
), pp.
27
35
.
7.
Zou
,
C.
,
Yang
,
Z.
,
Cui
,
J.
,
Zhu
,
R.
,
Hou
,
L.
,
Tao
,
S.
,
Yuan
,
X.
, et al
,
2013
, “
Formation Mechanism, Geological Characteristics and Development Countermeasures of Shale Oil
,”
Oil Expl. Dev.
,
40
(
1
), pp.
14
26
.
8.
Hill
,
D.
, and
Nelson
,
C.
,
2000
, “
Gas Productive Fractured Shales: An Overview and Update
,”
Gas TIPS
,
6
(
2
), pp.
4
13
.
9.
Chen
,
S.
,
Li
,
B.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2021
, “
Study on Microcosmic Percolation Mechanism of Shale Gas Reservoir
,”
Chin. Sci.: Tech. Sci.
,
51
(
5
), pp.
580
590
.
10.
Shao
,
M.
,
Li
,
P.
,
Wang
,
P.
,
Zhang
,
P.
,
Gao
,
B.
, and
Huang
,
T.
,
2024
, “
Characterization of Oil-Bearing in Sub-Micron Pores of Shale by Laser Scanning Confocal Microscopy (LSCM): A Case Study of Qing Shan Kou Formation Shale oOil in Gu Long Depression, Song Liao Basin
,”
Petrol. Geol. Dev. Da Qing
,
1
(
10
), pp.
1000
3754
.
11.
Ho
,
T. A.
,
Papavassiliou
,
D. V.
,
Lee
,
L. L.
, and
Striolo
,
A.
,
2011
, “
Liquid Water Can Slip on a Hydrophilic Surface
,”
Proc. Natl. Acad. Sci.
,
108
(
39
), pp.
16170
16175
.
12.
Thomas
,
J. A.
,
McGaughey
,
A. J. H.
, and
Kuter-Arnebeck
,
O.
,
2010
, “
Pressure-Driven Water Flow Through Carbon Nanotubes: Insights From Molecular Dynamics Simulation
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
281
289
.
13.
Guo
,
W.
,
2014
,
Study on Shale oil Reservoir Characteristics and Percolation Mechanism
,
Graduate School of Chinese Academy of Sciences (Institute of Porous Flow Fluid Mechanics)
,
Beijing, China
.
14.
Yang
,
F.
,
Ning
,
Z.
,
Wang
,
Q.
, and
Peng
,
K.
,
2014
, “
Fractal Characteristics of Shale Nano-Pores
,”
Nat. Gas Geosci.
,
25
(
4
), pp.
618
623
.
15.
Thomas
,
J. A.
, and
McGaughey
,
A. J. H.
,
2008
, “
Reassessing Fast Water Transport Through Carbon Nanotubes
,”
Nano Lett.
,
8
(
9
), pp.
2788
2793
.
16.
Zhao
,
X.
,
Pu
,
X.
,
Zhou
,
L.
,
Jin
,
F.
, and
Han
,
G.
,
2021
, “
Shale Oil Enrichment Theory, Exploration Techniques and Prospects in the Deep Basin Lacustrine Area: A Case Study of the Paleogene in Huanghua Depression, Bohai Bay Basin
,”
J. Petrol.
,
42
(
2
), pp.
143
162
.
17.
Wang
,
S.
,
Javadpour
,
F.
, and
Feng
,
Q.
,
2016
, “
Fast Mass Transport of Oil and Supercritical Carbon Dioxide Through Organic Nanopores in Shale
,”
Fuel
,
181
, pp.
741
758
.
18.
Wang
,
S.
,
Javadpour
,
F.
, and
Feng
,
Q.
,
2016
, “
Molecular Dynamics Simulations of Oil Transport Through Inorganic Nanopores in Shale
,”
Fuel
,
171
, pp.
74
86
.
19.
Yu
,
B.
, and
Li
,
J.
,
2010
, “
Some Fractal Characters of Porous Media
,”
Fractals
,
9
(
3
), pp.
365
372
.
20.
Cai
,
J.
,
Yu
,
B.
,
Zou
,
M.
, and
Luo
,
L.
,
2010
, “
Fractal Characterization of Spontaneous Co-Current Imbibition in Porous Media
,”
Energy Fuels
,
24
(
3
), pp.
1860
1867
.
21.
Yan
,
X.
,
Huang
,
C.
,
Yao
,
J.
, and
Huang
,
T.
,
2014
, “
Embedded Discrete Crack Mathematical Model Based on Simulated Finite Difference Method
,”
Chin. Sci.: Tech. Sci.
,
44
(
12
), pp.
1333
1342
.
22.
Li
,
B.
,
2018
,
Numerical Simulation of Embedded Discrete Fracture Model for Horizontal Well With Staged Fracturing in Tight Reservoir
,
Southwest Petroleum University
,
Chengdu
.
23.
Huang
,
C.
,
Yao
,
J.
,
Wang
,
Y.
, and
Lu
,
X.
,
2011
, “
Numerical Simulation of Water Injection Development in Fractured Reservoir Based on Discrete Fracture Model
,”
Comput. Phys.
,
28
(
1
), pp.
41
49
.
24.
Yao
,
J.
,
Wang
,
Z.
,
Zhang
,
Y.
, and
Huang
,
C.
,
2010
, “
Discrete Fracture Grid Numerical Simulation Method for Naturally Fractured Reservoirs
,”
J. Petrol.
,
31
(
2
), pp.
284
288
.
25.
Zhang
,
T.
,
Li
,
X.
,
Shi
,
J.
,
Sun
,
Z.
,
Yin
,
Y.
,
Wu
,
K.
,
Li
,
J.
, and
Feng
,
D.
,
2018
, “
An Apparent Liquid Permeability Model of Dual-Wettability Nanoporous Media: A Case Study of Shale
,”
Chem. Eng. Sci.
,
187
, pp.
280
291
.
26.
Javadpour
,
F.
,
Mc
,
M.
, and
Naraghi
,
M. E.
,
2015
, “
Slip-Corrected Liquid Permeability and Its Effect on Hydraulic Fracturing and Fluid Loss in Shale
,”
Fuel
,
160
, pp.
549
559
.
27.
Wang
,
S.
,
Feng
,
Q.
,
Javadpour
,
F.
,
Xia
,
T.
, and
Li
,
Z.
,
2015
, “
Oil Adsorption in Shale Nanopores and Its Effect on Recoverable Oil-in-Place
,”
Int. J. Coal Geol.
,
147
, pp.
9
24
.
28.
Wang
,
Z.
,
Fan
,
W.
,
Sun
,
H.
,
Yao
,
J.
,
Zhu
,
G.
,
Zhang
,
L.
, and
Yang
,
Y.
,
2020
, “
Multiscale Flow Simulation of Shale Oil Considering Hydrothermal Process
,”
Appl. Therm. Eng.
,
177
, p.
115428
.
29.
Moinfar
,
A.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Johns
,
R. T.
,
2014
, “
Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs
,”
SPE J.
,
19
(
2
), pp.
289
303
.
You do not currently have access to this content.