Abstract

Frequent occurrences of wellhead sinking highlight the inadequacy of cement's supporting force for the casing, which results in the debonding of the casing–cement interface. The interface debonding leads to the failure of the casing–cement integrity and poses a substantial risk to the overall safety of the wellhead. To ensure wellhead safety, a casing–cement interface model has been established utilizing the peridynamic (PD) method of nonlocal action, aiming to quantify the bonding force at the casing–cement interface. The numerical results align remarkably with load–displacement curves from laboratory tests, validating the effectiveness of the peridynamic method in studying the mechanical behavior of debonding at the casing–cement interface. In addition, further factor analysis was carried out to understand the failure law of the interface. The peak value of interfacial bonding force is found to have a linear correlation with the interfacial coefficient and cement elastic modulus. Specifically, an increase in the interface coefficient from 0.5 to 0.8 and 1 leads to a respective 33% and 53% rise in the peak interfacial bonding force. Similarly, when the elastic modulus of cement escalates from 5 GPa to 10 GPa and 15 GPa, the peak bonding force surges by 93% and 178%, respectively. Field examples show that quantifying cement supporting force on the casing significantly ensures wellhead safety and prevents wellhead sinking.

References

1.
Liu
,
G.
,
2021
,
Applied Well Cementing Engineering
,
Gulf Professional Publishing
,
Houston, TX
.
2.
de Souza
,
C. O.
,
de Sousa
,
J. R.
, and
Ellwanger
,
G. B.
,
2020
, “
Wellhead Axial Movements in Subsea Wells With Partially Cemented Surface Casings
,”
J. Pet. Sci. Eng.
,
194
, p.
107537
.
3.
Shaygan
,
K.
,
Haghshenas Lari
,
S.
,
Mahani
,
H.
, and
Jamshidi
,
S.
,
2024
, “
Geomechanical Investigation of Casing Collapse Using Finite Element Modeling: The Role of Cement Sheath Integrity
,”
Geoenergy Sci. Eng.
,
233
, p.
212579
.
4.
Kuanhai
,
D.
,
Xie
,
P.
,
Yue
,
Y.
,
Zeng
,
D.
,
Qiong
,
L.
, and
Lin
,
Y.
,
2021
, “
Study on the Effect of Interface Failure Between Casing and Cement Sheath on Casing Stress Under Non-uniform In-Situ Stress
,”
Appl. Math. Modell.
,
91
, pp.
632
652
.
5.
Lian
,
W.
,
Li
,
J.
,
Tao
,
Q.
,
Du
,
J.
,
Wang
,
L.
, and
Xi
,
Y.
,
2020
, “
Formation Mechanism of Continuous Gas Leakage Paths in Cement Sheath During Hydraulic Fracturing
,”
Energy Sci. Eng.
,
8
(
7
), pp.
2527
2547
.
6.
Al Ramadan
,
M.
,
Salehi
,
S.
,
Aljawad
,
M. S.
, and
Teodoriu
,
C.
,
2021
, “
Numerical Modeling of Gas Migration Through Cement Sheath and Microannulus
,”
ACS Omega
,
6
(
50
), pp.
34931
34944
.
7.
Zeng
,
Y.
,
Liu
,
R.
,
Li
,
X.
,
Zhou
,
S.
,
Tao
,
Q.
, and
Lu
,
P.
,
2019
, “
Cement Sheath Sealing Integrity Evaluation Under Cyclic Loading Using Large-Scale Sealing Evaluation Equipment for Complex Subsurface Settings
,”
J. Pet. Sci. Eng.
,
176
, pp.
811
820
.
8.
Arjomand
,
E.
,
Bennett
,
T.
, and
Nguyen
,
G. D.
,
2018
, “
Evaluation of Cement Sheath Integrity Subject to Enhanced Pressure
,”
J. Pet. Sci. Eng.
,
170
, pp.
1
13
.
9.
Zhang
,
X.
,
Bi
,
Z.
,
Wang
,
L.
,
Guo
,
Y.
,
Yang
,
C.
, and
Yang
,
G.
,
2022
, “
Shakedown Analysis on the Integrity of Cement Sheath Under Deep and Large-scale Multi-section Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
208
, p.
109619
.
10.
Yan
,
Y.
,
Cai
,
M.
,
Ma
,
W.-H.
,
Zhang
,
X.-C.
,
Han
,
L.-H.
, and
Liu
,
Y.-H.
,
2024
, “
Research on Casing Deformation Prevention Technology Based on Cementing Slurry System Optimization
,”
Pet. Sci.
,
21
(
2
), pp.
1231
1240
.
11.
Deng
,
K.-H.
,
Zhou
,
N.-T.
,
Lin
,
Y.-H.
,
Wu
,
Y.-X.
,
Chen
,
J.
,
Shu
,
C.
, and
Xie
,
P.-F.
,
2023
, “
Failure Mechanism and Influencing Factors of Cement Sheath Integrity Under Alternating Pressure
,”
Pet. Sci.
,
20
(
4
), pp.
2413
2427
.
12.
Jiang
,
J.
,
Li
,
J.
,
Liu
,
G.
,
Lian
,
W.
,
Xi
,
Y.
,
Yang
,
H.
, and
Li
,
W.
,
2020
, “
Numerical Simulation Investigation on Fracture Debonding Failure of Cement Plug/Casing Interface in Abandoned Wells
,”
J. Pet. Sci. Eng.
,
192
, p.
107226
.
13.
Lin
,
Y.
,
Deng
,
K.
,
Yi
,
H.
,
Zeng
,
D.
,
Tang
,
L.
, and
Wei
,
Q.
,
2020
, “
Integrity Tests of Cement Sheath for Shale Gas Wells Under Strong Alternating Thermal Loads
,”
Nat. Gas Ind. B
,
7
(
6
), pp.
671
679
.
14.
Yang
,
H.
,
Fu
,
Q.
,
Wu
,
J.
,
Qu
,
L.
,
Xiong
,
D.
, and
Liu
,
Y.
,
2020
, “
Experimental Study of Shear and Hydraulic Bonding Strength Between Casing and Cement Under Complex Temperature and Pressure Conditions
,”
R. Soc. Open Sci.
,
7
(
4
), p.
192115
.
15.
Hou
,
D.
,
Zhang
,
Z.
,
Geng
,
Y.
,
Wu
,
Z.
, and
Yang
,
H.
,
2023
, “
Experimental Study on the Channeling Leakage Properties of Compact-Size Casing-Cement Sheath-Stratum Assembly in Deep and Ultra-Deep Wells
,”
Process Saf. Environ. Prot.
,
178
, pp.
881
892
.
16.
Wang
,
Y.
,
Liu
,
K.
, and
Gao
,
D.
,
2021
, “
Investigation of the Interface Cracks on the Cement Sheath Stress in Shale Gas Wells During Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
205
, p.
108981
.
17.
Lee
,
J.
,
Sheesley
,
E.
,
Jing
,
Y.
,
Xi
,
Y.
, and
Willam
,
K.
,
2018
, “
The Effect of Heating and Cooling on the Bond Strength Between Concrete and Steel Reinforcement Bars With and Without Epoxy Coating
,”
Constr. Build. Mater.
,
177
, pp.
230
236
.
18.
Michael
,
A.
, and
Gupta
,
I.
,
2022
, “
Wellbore Integrity After a Blowout: Stress Evolution Within the Casing-Cement Sheath-Rock Formation System
,”
Results Geophys. Sci.
,
12
, p.
100045
.
19.
De Andrade
,
J.
,
Sangesland
,
S.
,
Skorpa
,
R.
,
Todorovic
,
J.
, and
Vrålstad
,
T.
,
2016
, “
Experimental Laboratory Setup for Visualization and Quantification of Cement-Sheath Integrity
,”
SPE Drill. Completion
,
31
(
4
), pp.
317
326
.
20.
Wang
,
W.
, and
Taleghani
,
A. D.
,
2014
, “
Three-Dimensional Analysis of Cement Sheath Integrity Around Wellbores
,”
J. Pet. Sci. Eng.
,
121
, pp.
38
51
.
21.
Zi
,
G.
,
Rabczuk
,
T.
, and
Wall
,
W.
,
2006
, “
Extended Meshfree Methods Without Branch Enrichment for Cohesive Cracks
,”
Comput. Mech.
,
40
(
2
), pp.
367
382
.
22.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
23.
Jin
,
Y.
,
Wang
,
M.
,
Shi
,
H.
,
Jia
,
Y.
,
Wu
,
Q.
,
Burlion
,
N.
, and
Shao
,
J.
,
2023
, “
Experimental and Numerical Study of the Influence of Inclusion Size on the Drying Shrinkage Cracking in Cementitious Composites
,”
Int. J. Numer. Anal. Methods Geomech.
,
47
(
15
), pp.
2762
2790
.
24.
Xu
,
J.
,
Yang
,
Z.
,
Wang
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Zhang
,
J.
,
2023
, “
Peridynamic Simulation for the Damage Patterns of Glass Considering the Influence of Rate-Dependence and Pre-defects
,”
Eng. Fract. Mech.
,
291
, p.
109539
.
25.
Xu
,
H.
,
Liu
,
Y.
,
Hou
,
Z.
,
Dou
,
Z.
,
Zhang
,
J.
, and
Yang
,
G.
,
2023
, “
Study on Hydraulic Cracking Mechanism and Propagation Characteristics of Ice Hole Based on Peridynamics
,”
Appl. Ocean Res.
,
139
, p.
103719
.
26.
Zhao
,
S.
,
Liu
,
Y.
,
Yang
,
S.
,
Li
,
F.
,
Gao
,
W.
, and
Yang
,
G.
,
2024
, “
Mechanical Behavior and Cement Sheath Damage Characteristics of Casing Pullout Based on Peridynamics
,”
Geoenergy Sci. Eng.
,
240
, p.
213005
.
27.
Madenci
,
E.
, and
Oterkus
,
E.
,
2014
,
Peridynamic Theory and Its Applications
,
Springer
,
New York
.
28.
Dorduncu
,
M.
,
Ren
,
H.
,
Zhuang
,
X.
,
Silling
,
S.
,
Madenci
,
E.
, and
Rabczuk
,
T.
,
2024
, “
A Review of Peridynamic Theory and Nonlocal Operators Along With Their Computer Implementations
,”
Comput. Struct.
,
299
, p.
107395
.
29.
Zheng
,
J.
,
Shen
,
F.
,
Gu
,
X.
, and
Zhang
,
Q.
,
2022
, “
Simulating Failure Behavior of Reinforced Concrete T-Beam Under Impact Loading by Using Peridynamics
,”
Int. J. Impact Eng.
,
165
, p.
104231
.
30.
Zhang
,
Y.
, and
Qiao
,
P.
,
2019
, “
Peridynamic Simulation of two-Dimensional Axisymmetric Pull-Out Tests
,”
Int. J. Solids Struct.
,
168
, pp.
41
57
.
31.
Park
,
H.
, and
Kim
,
J.-Y.
,
2005
, “
Plasticity Model Using Multiple Failure Criteria for Concrete in Compression
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2303
2322
.
32.
Kamensky
,
D.
,
Behzadinasab
,
M.
,
Foster
,
J. T.
, and
Bazilevs
,
Y.
,
2019
, “
Peridynamic Modeling of Frictional Contact
,”
J. Peridyn. Nonlocal Model.
,
1
(
2
), pp.
107
121
.
33.
Guan
,
J.
,
Yan
,
X.
, and
Guo
,
L.
,
2023
, “
An Adaptive Contact Model Involving Friction Based on Peridynamics
,”
Eur. J. Mech.—A/Solids
,
100
, p.
104966
.
34.
Lu
,
J.
,
Zhang
,
Y.
,
Muhammad
,
H.
,
Chen
,
Z.
,
Xiao
,
Y.
, and
Ye
,
B.
,
2019
, “
3D Analysis of Anchor Bolt Pullout in Concrete Materials Using the Non-ordinary State-Based Peridynamics
,”
Eng. Fract. Mech.
,
207
, pp.
68
85
.
You do not currently have access to this content.