In order to study the dynamic stall phenomenon on a Darrieus wind turbine, the incompressible flow field around a moving airfoil is simulated using a noninertial stream function-vorticity formulation of the two-dimensional unsteady Navier-Stokes equations. Spatial discretization is achieved by the streamline upwind Petrov-Galerkin finite element method on a hybrid mesh composed of a structured region of quadrilateral elements in the vicinity of solid boundaries, an unstructured region of triangular elements elsewhere, and a layer of infinite elements surrounding the domain and projecting the external boundary to infinity. Temporal discretization is achieved by an implicit second order finite difference scheme. At each time step, a nonlinear algebraic system is solved by a Newton method. To accelerate computations, the generalized minimum residual method with an incomplete triangular factorization preconditioning is used to solve the linearized Newton systems. The solver is applied to simulate the flow around a NACA 0015 airfoil in Darrieus motion and the results are compared to experimental observations. To the authors’ knowledge, it is the first time that the simulation of such a motion has been performed using the Navier-Stokes equations.

This content is only available via PDF.
You do not currently have access to this content.