There has been an explosive growth in the development of new materials and processing techniques in recent years to meet the challenges posed by new applications arising in electronics, telecommunications, aerospace, transportation, and other new and traditional areas. Semiconductor and optical materials, composites, ceramics, biomaterials, advanced polymers, and specialized alloys are some of the materials that have seen intense interest and research activity over the last two decades. New approaches have been developed to improve product quality, reduce cost, and achieve essentially custom-made material properties. Current trends indicate continued research effort in materials processing as demand for specialized materials continues to increase. Fluid flow that arises in many materials processing applications is critical in the determination of the quality and characteristics of the final product and in the control, operation, and optimization of the system. This review is focused on the fluid flow phenomena underlying a wide variety of materials processing operations such as optical fiber manufacture, crystal growth for semiconductor fabrication, casting, thin film manufacture, and polymer processing. The review outlines the main aspects that must be considered in materials processing, the basic considerations that are common across fluid flow phenomena involved in different areas, the present state of the art in analytical, experimental and numerical techniques that may be employed to study the flow, and the effect of fluid flow on the process and the product. The main issues that distinguish flow in materials processing from that in other fields, as well as the similar aspects, are outlined. The complexities that are inherent in materials processing, such as large material property changes, complicated domains, multiple regions, combined mechanisms, and complex boundary conditions are discussed. The governing equations and boundary conditions for typical processes, along with important parameters, common simplifications and specialized methods employed to study these processes are outlined. The field is vast and it is not possible to consider all the different techniques employed for materials processing. Among the processes discussed in some detail are polymer extrusion, optical fiber drawing, casting, continuous processing, and chemical vapor deposition for the fabrication of thin films. Besides indicating the effect of fluid flow on the final product, these results illustrate the nature of the basic problems, solution strategies, and issues involved in the area. The review also discusses present trends in materials processing and suggests future research needs. Of particular importance are well-controlled and well-designed experiments that would provide inputs for model validation and for increased understanding of the underlying fluid flow mechanisms. Also, accurate material property data are very much needed to obtain accurate and repeatable results that can form the basis for design and optimization. There is need for the development of innovative numerical and experimental approaches to study the complex flows that commonly arise in materials processing. Materials processing techniques that are in particular need of further detailed work are listed. Finally, it is stessed that it is critical to understand the basic mechanisms that determine changes in the material, in addition to the fluid flow aspects, in order to impact on the overall field of materials processing.

1.
Jaluria, Y., 1998, Design and Optimization of Thermal Systems, McGraw-Hill, New York.
2.
Doyle, L. E., Keyser, C. A., Leach, J. L., Scharder, G. F., and Singer, M. B., 1987, Manufacturing Processes and Materials for Engineers, Prentice-Hall, Englewood Cliffs, NJ.
3.
Schey, J. A., 1987, Introduction to Manufacturing Processes, 2nd Ed., McGraw-Hill, New York.
4.
Kalpakjian, S., 1989, Manufacturing Engineering and Technology, Addison-Wesley, Reading, MA.
5.
Szekely, J., 1979, Fluid Flow Phenomena in Metals Processing, Academic Press, New York.
6.
Ghosh, A., and Mallik, A. K., 1986, Manufacturing Science, Ellis Horwood, Chichester, U.K.
7.
Avitzur, B., 1968, Metal Forming: Processes and Analysis, McGraw-Hill, New York.
8.
Altan, T., Oh, S. I., and Gegel, H. L., 1971, Metal Forming: Fundamentals and Applications, Amer. Soc. Metals, Metals Park, OH.
9.
Fenner, R. T., 1979, Principles of Polymer Processing, Chemical Publishing, New York.
10.
Easterling, K., 1983, Introduction to Physical Metallurgy of Welding, Butterworths, London, U.K.
11.
Hughel, T. J., and Bolling, G. F., eds., 1971, Solidification, Amer. Soc. Metals, Metals Park, OH.
12.
Kuhn, H. A., and Lawley, A., eds., 1978, Powder Metallurgy Processing, New Techniques and Analysis, Academic Press, New York.
13.
Chen, M. M., Mazumder, J., and Tucker, C. L., eds., 1983, “Transport Phenomena in Materials Processing,” HTD Vol. 29, Amer. Soc. Mech. Engrs., New York.
14.
Li, T., ed., 1985, Optical Fiber Communications, Vol. 1: Fiber Fabrication, Academic Press, New York.
15.
Poulikakos, D., ed., 1996, Transport Phenomena in Materials Processing, Adv. Heat Transfer, Academic Press, San Diego, CA 18.
16.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
, pp.
1205
1219
.
17.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1996
, “
Effect of Variable Properties and Viscous Dissipation During Optical Fiber Drawing
,”
ASME J. Heat Transfer
,
118
, pp.
350
358
.
18.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1996
, “
Simulation of the Transport Processes in the Neck-Down Region of the Furnace Drawn Optical Fiber
,”
Int. J. Heat Mass Transf.
,
40
, pp.
843
856
.
19.
Jaluria
,
Y.
,
1996
, “
Heat and Mass Transfer in the Extrusion of Non-Newtonian Materials
,”
Adv. Heat Transfer
,
28
, pp.
145
230
.
20.
Jaluria
,
Y.
,
1992
, “
Transport from Continuously Moving Materials Undergoing Thermal Processing
,”
Annu. Rev. Heat Transfer
,
4
, pp.
187
245
.
21.
Jaluria, Y., 1980, Natural Convection Heat and Mass Transfer, Pergamon Press, Oxford, UK.
22.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Taylor and Francis, Philadelphia, PA.
23.
Jaluria, Y., and Torrance, K. E., 1986, Computational Heat Transfer, Taylor and Francis, Philadelphia, PA.
24.
Ramachandran
,
N.
,
Gupta
,
J. P.
, and
Jaluria
,
Y.
,
1982
, “
Thermal and Fluid Flow Effects During Solidification in a Rectangular Enclosure
,”
Int. J. Heat Mass Transf.
,
25
, pp.
187
194
.
25.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1988
, “
Developing Laminar Mixed Convection with Solidification in a Vertical Channel
,”
ASME J. Heat Transfer
,
110
, pp.
410
415
.
26.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1993
, “
A Comparison of Different Solution Methodologies for Melting and Solidification Problems in Enclosures
,”
Numer. Heat Transfer, Part B
,
24B
, pp.
77
105
.
27.
Prescott
,
P. J.
, and
Incropera
,
F. P.
,
1996
, “
Convection Heat and Mass Transfer in Alloy Solidification
,”
Adv. Heat Transfer
,
28
, pp.
231
338
.
28.
Harper, J. M., 1981, Extrusion of Foods: Volume I, CRC Press, Boca Raton, FL.
29.
Kokini, J. L., Ho, C.-T., and Karwe, M. V., eds., 1992, Food Extrusion Science and Technology, Marcel Dekker, New York.
30.
Wang
,
S. S.
,
Chiang
,
C. C.
,
Yeh
,
A. I.
,
Zhao
,
B.
, and
Kim
,
I. H.
,
1989
, “
Kinetics of Phase Transition of Waxy Corn Starch at Extrusion Temperatures and Moisture Contents
,”
J. Food. Sci.
,
54
, pp.
1298
1301
.
31.
Abib, A. H., Jaluria, Y., and Chiruvella, R. V., 1993, “Thermal Processing of Food Materials in a Single Screw Extruder,” Heat Transfer in Food Processing, ASME Heat Transfer Div., Vol. 254, ASME, New York, pp. 57–67.
32.
Chiruvella
,
R. V.
,
Jaluria
,
Y.
, and
Karwe
,
M. V.
,
1996
, “
Numerical Simulation of Extrusion Cooking of Starchy Materials
,”
J. Food. Eng.
,
30
, pp.
449
467
.
33.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
197
232
.
34.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Heat Transfer
,
28
, pp.
339
425
.
35.
Jensen
,
K. F.
, and
Graves
,
D. B.
,
1983
, “
Modeling and Analysis of Low Pressure CVD Reactors
,”
J. Electrochem. Soc.
,
130
, pp.
1950
1957
.
36.
Jaluria, Y., 1996, Computer Methods for Engineering, Taylor and Francis, Washington, DC.
37.
Chiu
,
W. K.-S.
,
Jaluria
,
Y.
, and
Glumac
,
N. C.
,
2000
, “
Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations
,”
Numer. Heat Transfer
,
37
, pp.
113
132
.
38.
Tadmor, Z., and Gogos, C., 1979, Principles of Polymer Processing, Wiley, New York.
39.
Pearson, J. R. A., and Richardson, S. M., eds., 1983, Computational Analysis of Polymer Processing, Appl. Sci. Pub., London, UK.
40.
Karwe
,
M. V.
, and
Jaluria
,
Y.
,
1990
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Single-Screw Extruder for Non-Newtonian Fluids
,”
Numer. Heat Transfer
,
17
, pp.
167
190
.
41.
Choudhury
,
S. Roy
,
Jaluria
,
Y.
, and
Lee
,
S. H.-K.
,
1999
, “
Generation of neck-down profile for furnace drawing of optical fiber
,”
Numer. Heat Transfer
,
35
, pp.
1
24
.
42.
Jaluria
,
Y.
,
1976
, “
Temperature Regulation of a Plastic-Insulated Wire in Radiant Heating
,”
ASME J. Heat Transfer
,
98
, pp.
678
680
.
43.
Jaluria
,
Y.
,
1988
, “
Numerical Simulation of the Transport Processes in a Heat Treatment Furnace
,”
Int. J. Numer. Methods Eng.
,
25
, pp.
387
399
.
44.
Siegel
,
R.
,
1978
, “
Shape of Two-Dimensional Solidification Interface During Directional Solidification by Continuous Casting
,”
ASME J. Heat Transfer
,
100
, pp.
3
10
.
45.
Siegel
,
R.
,
1984
, “
Two-Region Analysis of Interface Shape in Continuous Casting with Superheated Liquid
,”
ASME J. Heat Transfer
,
106
, pp.
506
511
.
46.
Chu
,
T. Y.
,
1975
, “
A Hydrostatic Model of Solder Fillets
,”
The Western Electric Engineer
,
19
, No.
2
, pp.
31
42
.
47.
Kou, S., 1996, Transport Phenomena and Materials Processing, Wiley, New York.
48.
Jaluria
,
Y.
, and
Singh
,
A. P.
,
1983
, “
Temperature Distribution in a Moving Material Subjected to Surface Energy Transfer
,”
Comput. Methods Appl. Mech. Eng.
,
41
, pp.
145
157
.
49.
Choudhury
,
S. Roy
, and
Jaluria
,
Y.
,
1994
, “
Analytical Solution for the Transient Temperature Distribution in a Moving Rod or Plate of Finite Length with Surface Heat Transfer
,”
Int. J. Heat Mass Transf.
,
37
, pp.
1193
1205
.
50.
Kwon
,
T. H.
,
Shen
,
S. F.
, and
Wang
,
K. K.
,
1986
, “
Pressure Drop of Polymeric Melts in Conical Converging Flow: Experiments and Predictions
Polym. Eng. Sci.
,
28
, pp.
214
224
.
51.
Lin
,
P.
, and
Jaluria
,
Y.
,
1997
, “
Conjugate Transport in Polymer Melt Flow Through Extrusion Dies
,”
Polym. Eng. Sci.
,
37
, pp.
1582
1596
.
52.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor and Francis, Philadelphia, PA.
53.
Mallinson
,
G. D.
, and
de Vahl Davis
,
G.
,
1973
, “
The Method of False Transient for the Solution of Coupled Elliptic Equations
,”
J. Comput. Phys.
,
12
, pp.
435
461
.
54.
Leonard, B. P., 1997, “Bounded Higher-Order Upwind Multidimensional Finite-Volume Convection-Diffusion Algorithms,” Advances in Numerical Heat Transfer, Minkowycz, W. J. and Sparrow, E. M., eds., Vol. 1, Taylor and Francis, Philadelphia, PA, pp. 1–57.
55.
Peaceman
,
D. W.
, and
Rachford
,
H. H.
,
1955
, “
Numerical Solution of Parabolic and Elliptic Differential Equations
,”
J. Soc. Ind. Appl. Math.
,
3
, pp.
28
41
.
56.
Acharya, S., 1994, “Solution-Adaptive Techniques in Computational Heat Transfer and Fluid Flow,” Springer, Heidelberg, Germany 14, pp. 447–467.
57.
Sastrohartono
,
T.
,
Esseghir
,
M.
,
Kwon
,
T. H.
, and
Sernas
,
V.
,
1990
, “
Numerical and Experimental Studies of the Flow in the Nip Region of a Partially Intermeshing Co-Rotating Twin Screw Extruder
,”
Polym. Eng. Sci.
,
30
, pp.
1382
1398
.
58.
Sastrohartono
,
T.
, and
Kwon
,
T. H.
,
1990
, “
Finite Element Analysis of Mixing Phenomena in Tangential Twin Screw Extruders for Non-Newtonian Fluids
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1369
1383
.
59.
Kwon
,
T. H.
,
Joo
,
J. W.
, and
Kim
,
S. J.
,
1994
, “
Kinematics and Deformation Characteristics as a Mixing Measure in the Screw Extrusion Process
,”
Polym. Eng. Sci.
,
34
, pp.
174
189
.
60.
Kalyon
,
D. M.
,
Gotsis
,
A. D.
,
Yilmazer
,
U.
,
Gogos
,
C.
,
Sangani
,
H.
,
Aral
,
B.
, and
Tsenoglou
,
C.
,
1988
, “
Development of Experimental Techniques and Simulation Methods to Analyze Mixing in Co-Rotating Twin Screw Extrusion
,”
Adv. Polym. Technol.
,
8
, pp.
337
353
.
61.
Rauwendaal, C., 1986, Polymer Extrusion, Hanser Pub., New York.
62.
Esseghir, M., and Sernas, V., 1991, “A Cam-Driven Probe for Measurement of the Temperature Distribution in an Extruder Channel,” SPE ANTEC Tech. Papers, Vol. 37, pp. 54–57.
63.
Esseghir, M., and Sernas, V., 1992, “Experiments on a Single Screw Extruder with a Deep and Highly Curved Screw Channel,” Food Extrusion Science and Technology, J. L. Kokini, C. T. Ho, and M. V. Karwe, eds., Marcel Dekker, New York, pp. 21–40.
64.
Sastrohartono
,
T.
,
Jaluria
,
Y.
,
Esseghir
,
M.
, and
Sernas
,
V.
,
1995
, “
A Numerical and Experimental Study of Three-Dimensional Transport in the Channel of an Extruder for Polymeric Materials
,”
Int. J. Heat Mass Transf.
,
38
, pp.
1957
1973
.
65.
Wang
,
Y.
, and
White
,
J. L.
,
1989
, “
Non-Newtonian Flow Modeling in the Screw Region of an Intermeshing Co-rotating Twin Screw Extruder
,”
J. Non-Newtonian Fluid Mech.
,
32
, pp.
19
38
.
66.
Kwon, G. H., Jaluria, Y., Karwe, M. V., and Sastrohartono, T., 1991, “Numerical Simulation of the Transport Processes in a Twin screw Polymer Extruder,” Prog. Modeling Polymer Processing, A. I. Isayev, ed., Ch. 4, Hanser Pub., New York, pp. 77–115.
67.
Sastrohartono
,
T.
,
Jaluria
,
Y.
, and
Karwe
,
M. V.
,
1994
, “
Numerical Coupling of Multiple Region Simulations to Study Transport in a Twin Screw Extruder
,”
Numer. Heat Transfer
,
25
, pp.
541
557
.
68.
Chiruvella
,
R. V.
,
Jaluria
,
Y.
,
Karwe
,
M. V.
, and
Sernas
,
V.
,
1996
, “
Transport in a Twin-Screw Extruder for the Processing of Polymers
,”
Polym. Eng. Sci.
,
36
, pp.
1531
1540
.
69.
Zhu
,
W.
, and
Jaluria
,
Y.
,
2001
, “
Transport Processes and Feasible Operating Domain in a Twin-Screw Polymer Extruder
,”
Polym. Eng. Sci.
,
41
, pp.
107
117
.
70.
Karwe
,
M. V.
, and
Sernas
,
V.
,
1996
, “
Application of Laser Doppler Anemometry to Measure Velocity Distribution Inside the Screw Channel of a Twin Screw Extruder
,”
Journal of Food Process Engineering
,
19
, pp.
135
152
.
71.
Bakalis
,
S.
, and
Karwe
,
M. V.
,
1997
, “
Velocity Field in a Twin Screw Extruder
Int. J. Food Sci. Technol.
,
32
, pp.
241
253
.
72.
Jaluria
,
Y.
,
Liu
,
Y.
, and
Chiruvella
,
R. V.
,
1999
, “
Modeling and Simulation of the Solids Conveying and Unfilled Regions in Polymer Extrusion
,”
J. Reinf. Plast. Compos.
,
18
, pp.
15
26
.
73.
Yin
,
Z.
, and
Jaluria
,
Y.
,
1997
, “
Zonal Method to Model Radiative Transport in an Optical Fiber Drawing Furnace
,”
ASME J. Heat Transfer
,
119
, pp.
597
603
.
74.
Paek
,
U. C.
,
1999
, “
Free Drawing and Polymer Coating of Silica Glass Optical Fibers
,”
ASME J. Heat Transfer
,
121
, pp.
775
788
.
75.
Goren
,
S. L.
, and
Wronski
,
S.
,
1966
, “
The Shape of Low-Speed Jets of Newtonian Liquids
,”
J. Fluid Mech.
,
25
, pp.
185
198
.
76.
Nickell
,
R. E.
,
Tanner
,
R. I.
, and
Caswell
,
B.
,
1974
, “
The Solution of Viscous Incompressible Jet and Free-Surface Flows using Finite-Element Methods
,”
J. Fluid Mech.
,
65
, pp.
189
206
.
77.
Lewis
,
J. A.
,
1977
, “
The Collapse of a Viscous Tube
,”
J. Fluid Mech.
,
81
, pp.
129
135
.
78.
Gifford
,
W. A.
,
1982
, “
A Finite Element Analysis of Isothermal Fiber Formation
,”
Phys. Fluids
,
25
, pp.
219
225
.
79.
Levich
,
V. G.
, and
Krylov
,
V. S.
,
1969
, “
Surface-Tension Driven Phenomena
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
293
316
.
80.
Dianov
,
E. M.
,
Kashin
,
V. V.
,
Perminov
,
S. M.
,
Perminova
,
V. N.
,
Rusanov
,
S. Y.
, and
Sysoev
,
V. K.
,
1988
, “
The Effect of Different Conditions on the Drawing of Fibers from Preforms
,”
Glass Technol.
,
29
, No.
6
, pp.
258
262
.
81.
Choudhury
,
S. Roy
, and
Jaluria
,
Y.
,
1998
, “
Practical Aspects in the Thermal Transport During Optical Fiber Drawing
,”
J. Mater. Res.
,
13
, pp.
483
493
.
82.
Yin
,
Z.
, and
Jaluria
,
Y.
,
2000
, “
Neck Down and Thermally Induced Defects in High Speed Optical Fiber Drawing
,”
ASME J. Heat Transfer
,
122
, pp.
351
362
.
83.
Paek
,
U. C.
, and
Runk
,
R. B.
,
1978
, “
Physical Behavior of the Neck-down Region during Furnace Drawing of Silica Fibers
,”
J. Appl. Phys.
,
49
, pp.
4417
4422
.
84.
Paek
,
U. C.
,
Schroeder
,
C. M.
, and
Kurkjian
,
C. R.
,
1988
, “
Determination of the Viscosity of High Silica Glasses During Fibre Drawing
,”
Glass Technol.
,
29
, No.
6
, pp.
263
266
.
85.
Issa
,
J.
,
Yin
,
Z.
,
Polymeropoulos
,
C. E.
, and
Jaluria
,
Y.
,
1996
, “
Temperature Distribution in an Optical Fiber Draw Tower Furnace
,”
J. Mater. Process. Manuf. Sci.
,
4
, pp.
221
232
.
86.
Liu, Y., and Polymeropoulos, C. E., 1998, “Measurement and Prediction of Thermocouple Probe Temperatures Within Glass Rods Subjected to Radiative Heating,” Proc. 11th Int. Heat Transfer Conf., Kyongju, Korea, Taylor and Francis, Philadelphia, Vol. 4, pp. 27–32.
87.
Christodoulou
,
K. N.
, and
Scriven
,
L. E.
,
1989
, “
The Fluid Mechanics of Slide Coating
,”
J. Fluid Mech.
,
208
, pp.
321
354
.
88.
Dussan
,
E. B.
,
Rame
,
E.
, and
Garoff
,
S.
,
1991
, “
On Identifying the Appropriate Boundary Conditions at a Moving Contact Line: an Experimental Investigation
,”
J. Fluid Mech.
,
230
, pp.
97
116
.
89.
Chen
,
Q.
,
Rame
,
E.
, and
Garoff
,
S.
,
1997
, “
The Velocity Field Near Moving Contact Lines
,”
J. Fluid Mech.
,
337
, pp.
49
66
.
90.
Quere
,
D.
,
1999
, “
Fluid Coating on a Fiber
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
347
384
.
91.
Blyler
,
L. L.
, and
DiMarcello
,
F. V.
,
1980
, “
Fiber Drawing, Coating and Jacketing
,”
Proc. IEEE
,
68
, pp.
1194
1198
.
92.
Paek
,
U. C.
,
1986
, “
High Speed High Strength Fiber Coating
,”
J. Lightwave Technol.
,
LT-4
, pp.
1048
1059
.
93.
Simpkins
,
P.
, and
Kuck
,
V.
,
2000
, “
Air Entrapment in Coatings Via Tip Streaming Meniscus
,”
Nature (London)
,
403
, pp.
641
643
.
94.
Ravinutala, S., Rattan, K., Polymeropoulos, C., and Jaluria, Y., 2000, “Dynamic Menisci in a Pressurized Fiber Applicator,” Proc. 49th Int. Wire Cable Symp., Atlantic City, NJ.
95.
Abraham, A., and Polymeropoulos, C. E., 1999, “Dynamic Menisci on Moving Fibers,” Proc. 48th Int. Wire Cable Symp., Atlantic City, NJ.
96.
Vaskopulos
,
T.
,
Polymeropoulos
,
C. E.
, and
Zebib
,
A.
,
1995
, “
Cooling of Optical Fibers in Aiding and Opposing Forced Gas Flow
,”
Int. J. Heat Mass Transf.
,
18
, pp.
1933
1944
.
97.
Hanafusa
,
H.
,
Hibino
,
Y.
, and
Yamamoto
,
F.
,
1985
, “
Formation Mechanism of Drawing-Induced E’ Centers in Silica Optical Fibers
,”
J. Appl. Phys.
,
58
, No.
3
, pp.
1356
1361
.
98.
Hibino
,
Y.
,
Hanafusa
,
H.
, and
Sakaguchi
,
S.
,
1985
, “
Formation of Drawing-Induced E’ Centers in Silica Optical Fibers
,”
Jpn. J. Appl. Phys.
,
24
, No.
9
, pp.
1117
1121
.
99.
Flemings, M. C., 1974, Solidification Processing, McGraw-Hill, New York.
100.
Viskanta, R., 1985, “Natural Convection in Melting and Solidification,” Natural Convection: Fundamentals and Applications, S. Kakac, W. Aung, and R. Viskanta, eds., Hemisphere Pub. Co., Washington, DC, pp. 845–877.
101.
Huppert
,
H. E.
,
1990
, “
The Fluid Mechanics of Solidification
,”
J. Fluid Mech.
,
212
, pp.
209
240
.
102.
Davis
,
S. H.
,
1990
, “
Hydrodynamic Interactions in Directional Solidification
,”
J. Fluid Mech.
,
212
, pp.
241
262
.
103.
Prescott
,
P. J.
, and
Incropera
,
F. P.
,
1996
, “
Convection Heat and Mass Transfer in Alloy Solidification
,”
Adv. Heat Transfer
,
28
, pp.
231
338
.
104.
Sparrow
,
E. M.
,
Patankar
,
S. V.
, and
Ramadhyani
,
S.
,
1977
, “
Analysis of Melting in the Presence of Natural Convection in the Melt Region
,”
ASME J. Heat Transfer
,
99
, pp.
520
526
.
105.
Voller, V. R., 1997, “An Overview of Numerical Methods for Solving Phase Change Problems,” Advances in Numerical Heat Transfer, Minkowycz, W. J., and Sparrow, E. M., eds., Vol. 1, Taylor and Francis, Philadelphia, PA, pp. 341–380.
106.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1995
, “
Numerical Study of Conjugate Transient Solidification in an Enclosed Region
,”
Numer. Heat Transfer
,
27
, pp.
519
536
.
107.
Banaszek
,
J.
,
Jaluria
,
Y.
,
Kowalewski
,
T. A.
, and
Rebow
,
M.
,
1999
, “
Semi-implicit FEM Analysis of Natural Convection in Freezing Water
,”
Numer. Heat Transfer
,
36
, pp.
449
472
.
108.
Bathelt
,
A. G.
,
Viskanta
,
R.
, and
Leidenfrost
,
W.
,
1979
, “
An Experimental Investigation of Natural Convection in the Melted Region Around a Heated Horizontal Cylinder
,”
J. Fluid Mech.
,
90
, pp.
227
240
.
109.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
,
108
, pp.
174
181
.
110.
Wolff
,
F.
, and
Viskanta
,
R.
,
1987
, “
Melting of a Pure Metal from a Vertical Wall
,”
Exp. Heat Transfer
,
1
, pp.
17
30
.
111.
Wolff
,
F.
, and
Viskanta
,
R.
,
1988
, “
Solidification of a Pure Metal at a Vertical Wall in the Presence of Liquid Superheat
,”
Int. J. Heat Mass Transf.
,
31
, pp.
1735
1744
.
112.
Thompson
,
M. E.
, and
Szekely
,
J.
,
1988
, “
Mathematical and Physical Modeling of Double-Diffusive Convection of Aqueous Solutions Crystallizing at a Vertical Wall
,”
J. Fluid Mech.
,
187
, pp.
409
433
.
113.
Beckermann
,
C.
, and
Wang
,
C. Y.
,
1995
, “
Multiphase/-Scale Modeling of Alloy Solidification
,”
Annu. Rev. Heat Transfer
,
6
, pp.
115
198
.
114.
Wang
,
C. Y.
, and
Beckermann
,
C.
,
1993
, “
A Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidification
,”
Mater. Sci. Eng.
,
A171
, pp.
199
211
.
115.
Kang
,
B. H.
, and
Jaluria
,
Y.
,
1993
, “
Thermal Modeling of the Continuous Casting Process
,”
J. Thermophys. Heat Transfer
,
7
, pp.
139
147
.
116.
Lin
,
P.
, and
Jaluria
,
Y.
,
1997
, “
Heat Transfer and Solidification of Polymer Melt Flow in a Channel
,”
Polym. Eng. Sci.
,
37
, pp.
1247
1258
.
117.
Kang
,
B. H.
,
Jaluria
,
Y.
, and
Karwe
,
M. V.
,
1991
, “
Numerical Simulation of Conjugate Transport from a Continuous Moving Plate in Materials Processing
,”
Numer. Heat Transfer
,
19
, pp.
151
176
.
118.
Arridge
,
R. G. C.
, and
Prior
,
K.
,
1964
, “
Cooling Time of Silica Fibers
,”
Nature (London)
,
203
, pp.
386
387
.
119.
Tsou
,
F. K.
,
Sparrow
,
E. M.
, and
Godstein
,
R. J.
,
1967
Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface
,”
Int. J. Heat Mass Transf.
,
10
, pp.
219
235
.
120.
Karwe
,
M. V.
, and
Jaluria
,
Y.
,
1992
, “
Experimental Investigation of Thermal Transport from a Heated Moving Plate
,”
Int. J. Heat Mass Transf.
,
35
, pp.
493
511
.
121.
Evans
,
G.
, and
Greif
,
R.
,
1987
, “
A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
109
, pp.
928
935
.
122.
Fotiadis
,
D. I.
,
Boekholt
,
M.
,
Jensen
,
K. F.
, and
Richter
,
W.
,
1990
, “
Flow and Heat Transfer in CVD Reactors: Comparison of Raman Temperature Measurements and Finite Element Model Predictions
,”
J. Cryst. Growth
,
100
, pp.
577
599
.
123.
Karki
,
K. C.
,
Sathyamurthy
,
P. S.
, and
Patankar
,
S. V.
,
1993
, “
Three-Dimensional Mixed Convection in a Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
115
, pp.
803
806
.
124.
Chiu
,
W. K. S.
, and
Jaluria
,
Y.
,
2000
, “
Continuous Chemical Vapor Deposition Processing with a Moving Finite Thickness Susceptor
,”
J. Mater. Res.
,
15
, pp.
317
328
.
125.
Eversteyn
,
F. C.
,
Severin
,
P. J. W.
,
Brekel
,
C. H. J.
, and
Peek
,
H. L.
,
1970
, “
A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor
,”
J. Electrochem. Soc.
,
117
, pp.
925
931
.
126.
Chiu
,
W. K.-S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
,
2000
, “
Flow Structure and Heat Transfer in a Horizontal Converging Channel Heated From Below
,”
Phys. Fluids
,
12
, pp.
2128
2136
.
127.
Chiu, W. K. S., and Jaluria, Y., 1997, “Heat Transfer in Horizontal and Vertical CVD Reactors,” ASME Heat Transfer Div., Vol. 347, Amer. Soc. Mech. Engrs., New York, pp. 293–311.
128.
Rosenberger
,
F.
,
1980
, “
Fluid Dynamics in Crystal Growth from Vapors
,”
PhysicoChem. Hydrodyn.
,
1
, pp.
3
26
.
129.
Ostrach
,
S.
,
1983
, “
Fluid Mechanics in Crystal Growth—The 1982 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
105
, pp.
5
20
.
130.
Prasad
,
V.
,
Zhang
,
H.
, and
Anselmo
,
A. P.
,
1997
, “
Transport Phenomena in Czochralski Crystal Growth Processes
,”
Adv. Heat Transfer
,
30
, pp.
313
435
.
131.
Brown
,
R. A.
,
1988
, “
Theory of Transport Processes in Single Crystal Growth from the Melt
,”
AIChE J.
,
43
, pp.
881
911
.
132.
Ostrach
,
S.
,
1982
, “
Low-Gravity Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
313
345
.
133.
Guyene, T. D., and Hunt, J., eds., 1983, “Materials Sciences Under Microgravity,” European Space Agency, Rep. ESA-SP-191.
134.
Kamotani
,
Y.
,
Ostrach
,
S.
, and
Pline
,
A.
,
1994
, “
Analysis of Velocity Data Taken in Surface Tension Driven Convection Experiment in Microgravity
,”
Phys. Fluids
,
6
, pp.
3601
3609
.
135.
Xu
,
J.
, and
Zebib
,
A.
,
1998
, “
Oscillatory Two- and Three-Dimensional Thermocapillary Convection
,”
J. Fluid Mech.
,
364
, pp.
187
209
.
136.
Le Cunff
,
C.
, and
Zebib
,
A.
,
1999
, “
Thermocapillary-Coriolis Instabilities in Liquid Bridges
,”
J. Phys. Fluids
,
11
, pp.
2539
2545
.
137.
Schwabe
,
D.
,
1999
, “
Microgravity Experiments on Thermocapillary Flow Phenomena: Examples and Perspectives
,”
Journal of Japanese Society of Microgravity Applications
,
16
, pp.
1
6
.
138.
Balasubramaniam
,
R.
, and
Lavery
,
J. E.
,
1989
, “
Numerical Simulation of Thermocapillary Bubble Migration Under Microgravity for Large Reynolds and Marangoni Numbers
,”
Numer. Heat Transfer
,
16
, pp.
175
187
.
139.
Mundrane
,
M.
,
Xu
,
J.
, and
Zebib
,
A.
,
1995
, “
Thermocapillary Convection in a Rectangular Cavity with a Deformable Interface
,”
Adv. Space Res.
,
16
, pp.
41
53
.
140.
Wang
,
G. X.
, and
Prasad
,
V.
,
2000
, “
Rapid Solidification: Fundamentals and Modeling
,”
Annu. Rev. Heat Transfer
,
11
, pp.
207
297
.
141.
Bian
,
X.
, and
Rangel
,
R. H.
,
1996
, “
The Viscous Stagnation-Flow Solidification Problem
,”
Int. J. Heat Mass Transf.
,
39
, pp.
3581
3594
.
142.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1998
, “
A Comparison of Models, Numerical Simulation, and Experimental Results in Droplet Deposition Processes
,”
Acta Mater.
,
46
, pp.
4925
4933
.
143.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Method of Droplet Impact
,”
Phys. Fluids
,
11
, pp.
1406
1417
.
144.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transf.
,
41
, pp.
2929
2945
.
145.
Delplanque
,
J. P.
,
Cal
,
W. D.
,
Rangel
,
R. H.
, and
Lavernia
,
E. J.
,
1997
, “
Spray Atomization and Deposition of Tantalum Alloys
,”
Acta Mater.
,
45
, pp.
5233
5243
.
146.
Ahmed
,
I.
, and
Bergman
,
T. L.
,
1999
, “
Thermal Modeling of Plasma Spray Deposition of Nanostructured Ceramics
,”
Journal of Thermal Spray Technology
,
8
, pp.
315
322
.
You do not currently have access to this content.