The hydraulic performance of an industrial mixed-flow pump is analyzed using a three-dimensional potential flow model to compute the unsteady flow through the entire pump configuration. Subsequently, several additional models that use the potential flow results are employed to assess the losses. Computed head agrees well with experiments in the range 70 percent–130 percent BEP flow rate. Although the boundary layer displacement in the volute is substantial, its effect on global characteristics is negligible. Computations show that a truly unsteady analysis of the complete impeller and volute is necessary to compute even global performance characteristics; an analysis of an isolated impeller channel and volute with an averaging procedure at the interface is inadequate.

1.
Gu¨lich, J. F., 1999, Kreiselpumpen-Ein Handbuch fu¨r Entwicklung, Anlageplanung und Betrieb, Springer, Berlin.
2.
Muggli
,
F. A.
,
Eisele
,
K.
,
Casey
,
M. V.
,
Gu¨lich
,
J.
, and
Schachenmann
,
A.
,
1997
, “
Flow analysis in a pump diffuser. Part 2: Validation and limitations of CFD for diffuser flows
,”
ASME J. Fluids Eng.
,
119
, pp.
978
984
.
3.
Rodi
,
W.
,
1986
, “
Turbulence modelling for incompressible flows
,”
Phys. Chem. Hydrodyn.
,
7
, pp.
297
324
.
4.
Speziale
,
C. G.
,
1989
, “
Turbulence modelling in noninertial frames of reference
,”
Theor. Comput. Fluid Dyn.
,
1
, pp.
3
19
.
5.
Lakshminarayana
,
B.
,
1991
, “
An assessment of computational fluid dynamic techniques in the analysis of turbomachinery
,”
ASME J. Fluids Eng.
,
113
, pp.
315
352
.
6.
Schilling, R., 1994, “A critical review of numerical models predicting the flow through hydraulic machinery bladings,” 17th IAHR Symp., Beijing, GL2.
7.
Gu¨lich
,
J. F.
, and
Egger
,
R.
,
1992
, “
Part load flow and hydraulic stability of centrifugal pumps,” EPRI Report
TR-100219, Mar.
8.
Gu¨lich, J. F., Favre, J. N., and Denus, K., 1997, “An assessment of pump impeller performance predictions by 3D-Navier Stokes calculations,” ASME FED Summer Meeting, Vancouver, Canada.
9.
Daiguji
,
H.
,
1983
, “
Numerical analysis of three-dimensional potential flow in axial flow turbomachines
,”
Bull. JSME
,
26
, pp.
763
769
.
10.
Daiguji
,
H.
,
1983
, “
Numerical analysis of three-dimensional potential flow in centrifugal turbomachines
,”
Bull. JSME
,
26
, pp.
1495
1501
.
11.
Maiti
,
B.
,
Seshadri
,
V.
, and
Malhotra
,
R. C.
,
1989
, “
Analysis of flow through centrifugal pump impellers by finite element method
,”
Appl. Sci. Res.
,
46
, pp.
105
126
.
12.
Chen
,
K. S.
, and
Sue
,
M. C.
,
1993
, “
Finite element analysis of steady three-dimensional potential flow in the blade passage of a centrifugal turbomachine
,”
Comput. Struct.
,
46
, pp.
625
632
.
13.
Badie
,
R.
,
Jonker
,
J. B.
, and
Braembussche
,
R. A. van den
,
1994
, “
Finite element calculations and experimental verification of unsteady potential flow in a centrifugal pump
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
1083
1102
.
14.
Esch, B. P. M. van, 1997, “Simulation of three-dimensional unsteady flow in hydraulic pumps,” Ph.D. dissertation, Department of Mechanical Engineering, University of Twente, Enschede, The Netherlands.
15.
Kruyt
,
N. P.
,
Esch
,
B. P. M. van
, and
Jonker
,
J. B.
,
1999
, “
A superelement-based method for computing unsteady three-dimensional potential flows in hydraulic turbomachines
,”
Communications in Numerical Methods in Engineering
,
15
, pp.
381
397
.
16.
Zienkiewicz, O. C., and Taylor, R. L., 1989, The finite element method, McGraw-Hill, Maidenhead, UK.
17.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1992
, “
The superconvergent patch recovery and a posteriori error estimates Part I: the recovery technique
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
1331
1364
.
18.
Thwaites
,
B.
,
1949
, “
Approximate calculation of the laminar boundary layer
,”
Aeronaut. Q.
,
1
, pp.
245
280
.
19.
Green
,
J. E.
,
Weeks
,
D. J.
, and
Brooman
,
J. W. F.
,
1972
, “
Prediction of turbulent boundary layers and wakes in compressible flow by a lag-entrainment method
,” RAE Technical Report 72231, pp.
49
53
.
20.
Mayle
,
R. E.
,
1991
, “
The role of laminar-turbulent transition in gas turbine engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
21.
Bradshaw
,
P.
,
1975
, “
Complex turbulent flows
,”
ASME J. Fluids Eng.
,
97
, pp.
146
154
.
22.
Bradshaw
,
P.
,
1969
, “
The analogy between streamline curvature and buoyancy in turbulent shear flow
,”
J. Fluid Mech.
,
36
, pp.
177
191
.
23.
Johnston
,
J. P.
, and
Eide
,
S. A.
,
1976
, “
Turbulent boundary layers on centrifugal compressor blades: Prediction of the effects of surface curvature and rotation
,”
ASME J. Fluids Eng.
,
98
, Sept., pp.
374
381
.
24.
Schlichting, H., 1979, Boundary Layer Theory, McGraw-Hill, NY.
25.
Visser
,
F. C.
,
Brouwers
,
J. J. H.
, and
Badie
,
R.
,
1994
, “
Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades
,”
J. Fluid Mech.
,
269
, pp.
107
141
.
26.
Denton
,
J. D.
,
1993
, “
Loss mechanisms in turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
27.
Truckenbrodt, E., 1952, “A method of quadrature for the calculation of laminar and turbulent boundary layers in plane and rotational symmetric flow,” NACA TM 1379.
28.
Miller, D. S., 1978, “Internal flow systems,” British Hydromechanics Research Association (BHRA) Fluid Engineering Series, Vol. 5.
29.
Bird, R. B., Steward, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, NY., pp. 217–220.
30.
Hirs
,
G. G.
,
1973
, “
A bulk-flow theory for turbulence in lubricant films
,”
ASME J. Lubr. Technol.
,
95
, Apr., pp.
137
146
.
31.
Childs
,
D. W.
,
1989
, “
Fluid-structure interaction forces at pump-impeller-shroud surfaces for rotor-dynamic calculations
,”
ASME J. Vibration, Acoustics, Stress, and Reliability in Design
,
111
, pp.
217
225
.
32.
Moody
,
L. F.
,
1994
, “
Friction factors in pipe flow
,”
Trans. ASME
,
66
, pp.
671
684
.
33.
Nelson
,
C. C.
, and
Nguyen
,
D. T.
,
1987
, “
Comparison of Hirs’ equation with Moody’s equation for determining rotordynamic coefficients of annular pressure seals
,”
ASME J. Tribol.
,
109
, pp.
144
148
.
34.
Yamada
,
Y.
,
1962
, “
Resistance of a flow through an annulus with an inner rotating cylinder
,”
Bull. JSME
,
5
, No.
18
, pp.
302
310
.
35.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber dimension effects on induced flow and friction resistance of enclosed rotating disks
,”
ASME J. Basic Eng.
,
82
, pp.
217
232
.
36.
Stepanoff, A. J., 1957, Centrifugal and axial flow pumps-Theory, design, and application, 2nd edition, Wiley, NY.
37.
Murawaski
,
C. G.
, and
Vafai
,
K.
,
2000
, “
An experimental investigation of the effect of freestream turbulence on the wake of a separated low-pressure turbine blade at low Reynolds numbers
,”
ASME J. Fluids Eng.
,
122
, pp.
431
433
.
38.
Kurokawa, J., Kitahora, T., and Jiang, J., 1994, “Performance prediction of mixed-flow pumps using inlet reverse flow model,” Proceedings 17th IAHR symp., Beijing, Vol. 1, pp. 177–188.
39.
Schubert, F., 1988, “Untersuchungen der Druck- und Geschwindigkeitsverteilung in Radseitenra¨umen radialer Stro¨mungsmaschinen,” Dissertation, Technische Universita¨t Braunsweig.
You do not currently have access to this content.