Considering steady laminar incompressible flow in a triple bifurcation, which represents generations three to six of the human respiratory system, air flow fields and micron-particle transport have been simulated for several combinations of relatively high and low inlet Reynolds and Stokes numbers. While the upstream bifurcations are hardly affected by the third bifurcation, complex air and particle flow fields occur in the daughter tubes leading to the third dividers. Variations in Reynolds number, 500Re2000, and Stokes number, 0.04St0.12, cause locally changing vortical air flows as well as irregular particle motions. Preferential concentration of particles can be induced by the secondary vortical flow in the tubes when the inlet Reynolds number is high enough. The air and particle velocity profiles in the third daughter tubes are still quite different from those in the upstream tubes, which indicates that additional downstream effects are possible. This work may contribute to respiratory dose estimation in health risk assessment studies, as well as the analyses of drug aerosol delivery.

1.
Weibel, E. R., 1963, Morphometry of the Human Lung, Academic Press, New York.
2.
Horsfield
,
K.
, and
Cumming
,
G.
,
1968
, “
Morphology of the Bronchial Tree in man
,”
J. Appl. Physiol.
,
24
, pp.
373
383
.
3.
Kim
,
C. S.
,
Lee
,
B. K.
,
Lewars
,
G. G.
, and
Sackner
,
M. A.
,
1983
, “
Deposition of Aerosol Particles and Flow Resistance in Mathematical and Experimental Airway Models
,”
J. Appl. Physiol.
,
55
, pp.
154
163
.
4.
Bala´sha´zy
,
I.
,
1994
, “
Simulation of Particle Trajectories in Bifurcating Tubes
,”
J. Comput. Phys.
,
110
, pp.
11
22
.
5.
Gatlin, B., Cuicchi, C., Hammersley, J., Olson, D., Reddy, R., and Burnside, G., 1997, “Particle Path and Wall Deposition Patterns in Laminar Flow Through a Bifurcation,” ASME Vol. FEDSM97, Vancouver, British Columbia, Canada, pp. 1–6.
6.
Farag, A., Hammersley, J., Olson, D., and Ng, T., 1998, “Fluid Mechanics of a Symmetric Bifurcation Model of the Human Pulmonary System,” ASME Vol. FEDSM98, Washington, DC, pp. 1–8.
7.
Farag, A., Ng, T., Hammersley, J., and Olson, J., 1998, “Fluid Mechanics of An Asymmetric Bifurcation Model of Human Pulmonary System,” ASME Vol. FEDSM98, Washington, DC, pp. 1–8.
8.
Wilquem
,
F.
, and
Degrez
,
G.
,
1997
, “
Numerical Modeling of Steady Inspiratory Airflow Through a Three-Generation Model of the Human Central Airways
,”
ASME J. Biomech. Eng.
,
119
, pp.
59
65
.
9.
Lee
,
J. W.
,
Goo
,
J. H.
, and
Chung
,
M. K.
,
1996
, “
Characteristics of Inertial Deposition in a Double Bifurcation
,”
J. Aerosol Sci.
,
27
, pp.
119
138
.
10.
Comer
,
J. K.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Kim
,
C. S.
,
2000
, “
Aerosol Transport and Deposition in Sequentially Bifurcating Airways
,”
ASME J. Biomech. Eng.
,
122
, pp.
152
158
.
11.
Kleinstreuer, C., Comer, J. K., Zhang, Z., and Kim, C. S., 1999, “Computer Simulation of Aerosol Transport and Deposition in Multi-generation Airway Models,” First Joint Meeting of BMES & EMBS, Atlanta, GA, October 13–16; Conference Proceedings, Fouke, J. M., Nerem, R. M., eds.
12.
Kim
,
C. S.
, and
Iglesias
,
A. J.
,
1989
, “
Deposition of Inhaled Particles in Bifurcating Airway Models: I. Inspiratory Deposition
,”
Journal of Aerosol Medicine
,
2
, pp.
1
14
.
13.
Kim
,
C. S.
, and
Fisher
,
D. M.
,
1999
, “
Deposition Characteristics of Aerosol Particles in Successively Bifurcating Airway Models
,”
Aerosol. Sci. Technol.
,
31
, pp.
198
220
.
14.
Zhang, Z., Kleinstreuer, C., and Kim, C. S., 2001, “Computational Analysis of Micron-Particle Deposition in a Human Triple Bifurcation Airway Model,” Computer Methods in Biomechanics and Biomedical Engineering (in press).
15.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
, pp.
207
217
.
16.
Philips
,
C. G.
, and
Kaye
,
S. R.
,
1997
, “
On the Asymmetry of Bifurcation in the Bronchial Tree
,”
Respir. Physiol.
,
107
, pp.
85
98
.
17.
Chang
,
H. K.
, and
El Masry
,
O. A.
,
1982
, “
A Model Study of Flow Dynamics in Human Central Airways. Part I: Axial Velocity Profiles
,”
Respir. Physiol.
,
49
, pp.
75
95
.
18.
Isabey
,
D.
, and
Chang
,
H. K.
,
1982
, “
A Model Study of Flow Dynamics in Human Central Airways. Part II: Secondary Flow Velocities
,”
Respir. Physiol.
,
49
, pp.
97
113
.
19.
Chang, H. K., and Menon, A. S., 1985, “Air Flow Dynamics in the Human Airways,” Aerosols in Medicine. Principles, Diagnosis and Therapy, F. Moren, M. T. Newhouse, and M. B. Dolovich, eds., Elsevier Science, Amsterdam, pp. 77–122.
20.
Oho, K., and Amemiya, R., 1980, Practical Fiberoptic Bronchoscopy, Igaku-Shoin, Tokyo.
21.
Pedley, T. J., Schroter, R. C., and Sudlow, M. F., 1977, “Gas Flow and Mixing in The Airways,” Bioengineering Aspects of the Lung, West, J. B., ed., Marcel Dekker, New York.
22.
Martonen
,
T. B.
,
Yang
,
Y.
, and
Xue
,
Z. Q.
,
1994
, “
Influences of Cartilaginous Rings on Tracheobronchial Fluid Dynamics
,”
Inhalation Toxicol.
,
6
, pp.
185
203
.
23.
Comer, J. K., 1998, “Computational Two-Phase Flow Analyses and Applications to Gas-Liquid and Gas-Solid Flows,” PhD thesis, Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC.
24.
Kleinstreuer, C., 1997, Engineering Fluid Dynamics—An Interdisciplinary Systems Approach, Cambridge University Press, NY.
25.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles Drops and Particles, Academic Press, NY.
26.
Zhang, Z., and Kleinstreuer, C., 2001, “Effect of Particle Inlet Distribution on Deposition in A Triple Bifurcation Lung Airway Model,” Journal of Aerosol Medicine, 14, pp. 13–29.
27.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
,
2000
, “
Effects of Asymmetric Branch Flow Rates on Aerosol Deposition in Bifurcating Airways
,”
J. Med. Eng. Technol.
24
, pp.
192
202
.
28.
AEA Technology, 1997, CFX-4.2: Solver, CFX International, Oxfordshire, UK.
29.
Patankar, S. V., 1983, Numerical Heat Transfer and Fluid Flow, Hemisphere, NY.
30.
Lonsdale
,
R. D.
,
1993
, “
An algebraic multi-grid solver for the Navier Stokes equations on unstructured meshes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
3
, pp.
3
14
.
31.
Gear, C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ.
32.
Johnston, J. R., Isles, K. D., and Muir, D. C. F., 1977, “Inertial Deposition of Particles in Human Branching Airways,” Inhaled Particles IV, Walton, W. H., ed., Pergamon Press, Oxford, pp. 61–72.
33.
Comer, J. K., Kleinstreuer, C., Longest, P. W., Kim, C. S., and Kinsey, J. S., 1998, “Computational Aerosol Transport and Deposition Analyses for Human Exposure Chambers and Model Respiratory Airways,” ASME Vol. FEDSM98, Washington, DC, pp. 1–6.
34.
Kim
,
C. S.
,
Fisher
,
D. M.
,
Lutz
,
D. J.
, and
Gerrity
,
T. R.
,
1994
, “
Particle Deposition in Bifurcating Airway Models with Varying Airway Geometry
,”
J. Aerosol Sci.
,
25
, pp.
567
581
.
35.
Comer, J. K., Kleinstreuer, C., and Zhang, Z., 2001, “Flow Structures and Particle Deposition Patterns in Double Bifurcation Airway Models. Part 1. Air Flow Fields,” J. Fluid Mech., in press.
36.
Eaton
,
J. K.
, and
Fessler
,
J. R.
,
1994
, “
Preferential Concentration of Particles by Turbulence
,”
Int. J. Multiphase Flow
,
20, Suppl.
, pp.
169
209
.
You do not currently have access to this content.