The present study establishes the transition between the lower and upper subcritical regime of flow over a circular cylinder at 7×103<Re<2×104. Based on a new sampling technique, it is shown that the small-scale secondary vortices, especially those of high energy, play an important role in the transition. Within a primary vortex shedding period, the secondary vortices appear in groups. In a group, the streamwise velocity of secondary vortices exhibits the increase, peak, and decrease pattern associated with the formation of Strouhal vortices. In the lower subcritical regime, the Group I of singular group occurs most frequently, while in the upper subcritical regime, the Group III of three groups is the most frequent. Pairings of successive secondary vortices are found, and the paired vortices also appear in groups. The present model of transition involves the excitation of the separated shear layer at the most amplified mode by the disturbances associated with the secondary and paired vortices. Due to their mutual interference, the higher-energy small-scale vortices affect the primary vortex sheet, which in turn amplifies the former. These higher-energy vortices have enhanced pairings, which also play a dominant role in the later stage of transition.

1.
Norberg, C., 1987, “Effects of Reynolds Number and a Low Intensity Freestream Turbulence on the Flow Around a Circular Cylinder,” Ph.D. thesis, Chalmers University of Technology, Sweden.
2.
Kourta
,
A.
,
Boisson
,
H. C.
,
Chassaing
,
P.
, and
Ha Minh
,
H.
,
1987
, “
Nonlinear Interaction and the Transition to Turbulence in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
181
, pp.
141
161
.
3.
Prasad
,
A.
, and
Williamson
,
C. H. K.
,
1997
, “
The Instability of the Shear Layer Separating from a Bluff Body
,”
J. Fluid Mech.
,
333
, pp.
375
402
.
4.
Chyu
,
C.
, and
Rockwell
,
D.
,
1996
, “
Evolution of Patterns of Streamwise Vorticity in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
320
, pp.
117
137
.
5.
Wei
,
T.
, and
Smith
,
C. R.
,
1986
, “
Secondary Vortices in the Wake of Circular Cylinder
,”
J. Fluid Mech.
,
169
, pp.
513
533
.
6.
Ho
,
C. M.
, and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layer
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
365
424
.
7.
Winant
,
C. D.
, and
Browand
,
F. K.
,
1974
, “
Vortex Pairing: the Mechanism of Turbulent Mixing-Layer Growth at Moderate Reynolds Number
,”
J. Fluid Mech.
,
63
, pp.
413
427
.
8.
Bernal
,
L. P.
, and
Roshko
,
A.
,
1986
, “
Streamwise Vortex Structure in Plane Mixing Layers
,”
J. Fluid Mech.
,
170
, pp.
499
525
.
9.
Unal
,
M. F.
, and
Rockwell
,
D.
,
1988a
, “
On Vortex Formation from a Cylinder. Part 1: The Initial Instability
,”
J. Fluid Mech.
,
190
, pp.
491
512
.
10.
Braza
,
M.
,
Chassaing
,
P.
, and
Ha Minh
,
H.
,
1990
, “
Prediction of Large Scale Transition Features in the Wake of a Circular Cylinder
,”
Phys. Fluids A
,
2
, pp.
1461
1471
.
11.
Lin
,
S. C.
,
Towfighi
,
J.
, and
Rockwell
,
D.
,
1995
, “
Instantaneous Structure of the Near Wake of a Circular Cylinder: On the Effect of Reynolds Number
,”
J. Fluids Struct.
,
9
, pp.
409
418
.
12.
Unal
,
M. F.
, and
Rockwell
,
D.
,
1988b
, “
On Vortex Formation from a Cylinder. Part 2: Control by Splitter-Plate Interference
,”
J. Fluid Mech.
,
190
, pp.
513
529
.
13.
Achenbach
,
E.
,
1968
, “
Distribution of Local Pressure and Skin Friction Around Circular Cylinder in Cross-Flow Up to Re=5×106,
J. Fluid Mech.
,
34
, pp.
625
639
.
14.
Guven
,
O.
,
Farell
,
C.
, and
Patel
,
V. C.
,
1980
, “
Surface-roughness Effects on the Mean Flow Past Circular Cylinders
,”
J. Fluid Mech.
,
98
, pp.
673
701
.
15.
Norberg
,
C.
,
1986
, “
Interaction between Free Stream Turbulence and Vortex Shedding for a Single Tube in Cross Flow
,”
J. Wind. Eng. Ind. Aerodyn.
,
23
, pp.
501
514
.
16.
Norberg
,
C.
, and
Sunden
,
B.
,
1987
, “
Turbulence and Reynolds Number Effects on the Flow and Fluid Forces on a Single Cylinder in Cross Flow
,”
J. Fluids Struct.
,
1
, pp.
337
357
.
17.
Zdravkovich
,
M. M.
,
1990
, “
Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Cylinders
,”
J. Wind. Eng. Ind. Aerodyn.
,
33
, pp.
53
62
.
18.
Bloor
,
M. S.
,
1964
, “
The Transition to Turbulence in the Wake of Circular Cylinder
,”
J. Fluid Mech.
,
19
, pp.
290
304
.
19.
Peterka
,
J. A.
, and
Richardson
,
P. D.
,
1969
, “
Effects of Sound on Separated Flow
,”
J. Fluid Mech.
,
37
, pp.
265
287
.
20.
Szepessy
,
S.
, and
Bearman
,
P. W.
,
1992
, “
Aspect Ratio and End Plates Effects on Vortex Shedding from a Circular Cylinder
,”
J. Fluid Mech.
,
234
, pp.
191
217
.
21.
Hussain
,
A. K. M. F.
,
1983
, “
Coherent Structures—Reality and Myth
,”
Phys. Fluids
,
26
, pp.
2816
2850
.
22.
Gerrard
,
J. H.
,
1978
, “
The Wakes of Cylindrical Bluff Body at Low Reynolds Number
,”
Philos. Trans. R. Soc. London, Ser. A
,
288
, pp.
351
382
.
23.
Peltzer, R. D., 1980, “The Effect of Upstream Shear and Surface Roughness on the Vortex Shedding Patterns and Pressure Distributions around a Circular Cylinder in Transitional Reynolds Number Flows,” M.S. thesis, VPI & SU.
24.
Woo, H. G. C., Cermak, J. E., and Peterka, J. A., 1981, “Experiments on Vortex Shedding from Stationary and Oscillating Cables in a Linear Shear Flow,” Final Rep. on Contract N68305-78-C-0055 for the Naval Civil Flow, Colorado State University.
25.
Norberg
,
C.
,
1994
, “
An Experimental Investigation of the Flow Around a Circular Cylinder
,”
J. Fluid Mech.
,
258
, pp.
287
316
.
26.
Lin, S. J., 1981, “The Evolution of Spanwise Vorticity in the Free Shear Layer,” Ph.D. Thesis, University of California, Berkeley.
27.
Lasheras
,
J. C.
,
Cho
,
J. S.
, and
Maxworthy
,
J.
,
1986
, “
On the Origin and Evolution of Streamwise Vortical Structures in a Plane Free Shear Layer
,”
J. Fluid Mech.
,
172
, pp.
231
258
.
28.
Zaman
,
K. B. M. Q.
, and
Hussain
,
A. K. M. F.
,
1981
, “
Taylor Hypothesis and Large Scale Coherent Structures
,”
J. Fluid Mech.
,
112
, pp.
379
396
.
29.
Cebecci, T., and Bradshaw, P., 1977, Momentum Transfer in Boundary Layers, McGraw-Hill, New York
30.
Hussain
,
A. K. M. F.
, and
Hayakawa
,
M.
,
1987
, “
Education of Large Scale Organized Structures in a Turbulent Plane Wake
,”
J. Fluid Mech.
,
180
, pp.
193
229
.
31.
Freymuth
,
P.
,
1966
, “
On Transition in a Separated Laminar Boundary Layer
,”
J. Fluid Mech.
,
25
,
683
704
.
32.
Ho
,
C. M.
, and
Nosseir
,
N. S.
,
1981
, “
Dynamics of an Impinging Jet. Part I. The Feedback Phenomenon
,”
J. Fluid Mech.
,
105
, pp.
119
142
.
33.
Michalke
,
A.
,
1964
, “
On the Inviscid Instability of the Hyperbolic Tangent Velocity Profile
,”
J. Fluid Mech.
,
19
, pp.
543
556
.
34.
Hussain
,
A. K. M. F.
, and
Zedan
,
M. F.
,
1978
, “
Effects of Initial Condition on the Axisymmetric Free Shear Layer: Effects of the Initial Momentum Thickness
,”
Phys. Fluids
,
21
, pp.
1475
1481
.
35.
Zaman
,
K. B. M. Q.
, and
Hussain
,
A. K. M. F.
,
1980
, “
Vortex Pairing in a Circular Jet under Controlled Excitation Part 1. General Jet Response
,”
J. Fluid Mech.
,
101
, pp.
449
491
.
36.
Zaman
,
K. B. M. Q.
, and
McKinzie
,
D. J.
,
1991
, “
Control of Laminar Separation over Airfoils by Acoustic Excitation
,”
AIAA J.
,
29
, pp.
1095
1083
.
37.
Zaman
,
K. B. M. Q.
,
1992
, “
Effect of Acoustic Excitation on Stalled Flows over an Airfoil
,”
AIAA J.
,
30
, pp.
1492
1585
.
38.
Lamb, H., 1976, Hydrodynamics, Cambridge University Press.
39.
Tang
,
S. K.
, and
Ko
,
N. W. M.
,
1997
, “
Sound Generation by Interaction of Two Inviscid Two-dimensional Vortices
,”
J. Acoust. Soc. Am.
,
102
, pp.
1463
1473
.
40.
Tang
,
S. K.
, and
Ko
,
N. W. M.
,
1998
, “
Effects of a Background Axisymmetrical Potential Flow on Vortex Ring Pairing Sound
,”
J. Acoust. Soc. Am.
,
104
, pp.
3273
3281
.
41.
Ho
,
C. M.
, and
Huang
,
L. S.
,
1982
, “
Subharmonics and Vortex Merging in Mixing Layer
,”
J. Fluid Mech.
,
119
, pp.
443
473
.
42.
Maekawa, T., and Mizuno, S., 1967, “Flow Around the Separation Point and in the Near Wake of a Circular Cylinder,” Physics of Fluids Supplement, pp. S184–S186.
You do not currently have access to this content.