The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.

1.
Filina, N. N., and Weisend, J. G., 1996, Cryogenic Two-Phase Flow, Cambridge University Press, New York, NY, pp. 20–76.
2.
Van Sciver, S. W., 1996, Helium Cryogenics, Plenum Press, New York, N.Y., pp. 77–130.
3.
Cheremisinoff, N. P., 1989, Encyclopedia of Fluid Mechanics Volume 8, Aerodynamics and Compressible Flows, Gulf Publishing Corp., Houston, Texas, pp. 1039–1061.
4.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer
,”
J. Propul. Power
,
9
, No.
6
, pp.
819
826
.
5.
King
,
J. A.
,
1972
, “Design of Inducers for Two-Phase Operation Final Report,” NASA CR-123555, pp.
1
96
.
6.
Maki
,
K.
,
Ishii
,
T.
,
Kobayashi
,
K.
, and
Murakami
,
M.
,
2000
, “
Visualization and Pressure Variation of Cavitation in He II Flow
,”
Journal of the Cryogenic Society of Japan
, (in Japanese)
35
, No.
1
, pp.
16
21
.
7.
Ishii, T., Maki, K., and Murakami, M., 2000, “Temperature Variation Induced by Cavitation Flow of Liquid Helium,” Proceedings of 18th International Cryogenic Engineering Conference, (in CD ROM).
8.
Ludtke
,
P. R.
, and
Daney
,
D. E.
,
1988
, “
Cavitation Characteristics of a Small Centrifugal Pump in He I and He II
,”
Cryogenics
,
28
, pp.
96
100
.
9.
Daney
,
D. E.
,
1988
, “
Cavitation in Flowing Superfluid Helium
,”
Cryogenics
,
28
, pp.
132
136
.
10.
Ishimoto
,
J.
,
Oike
,
M.
, and
Kamijo
,
K.
,
2000
, “
Two-Dimensional Numerical Analysis of Boiling Two-Phase Flow of Liquid Helium
,”
JSME International Journal, Series B
,
43
, No.
1
, pp.
62
70
.
11.
Kataoka
,
I.
,
1986
, “
Local Instant Formulation of Two-phase Flow
,”
Int. J. Multiphase Flow
,
12
, No.
5
, pp.
745
758
.
12.
Landau
,
L.
,
1941
, “
The Theory of Superfluidity of Helium II
,”
Journal of Physics
,
V
, No.
1
, pp.
71
90
.
13.
Harlow
,
F. H.
, and
Amsden
,
A. A.
,
1975
, “
Numerical Calculation of Multiphase Fluid Flow
,”
J. Comput. Phys.
,
17
, pp.
19
52
.
14.
Cook
,
T. L.
, and
Harlow
,
F. H.
,
1986
, “
Vortices in Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
12
, No.
1
, pp.
35
61
.
15.
Yamamoto
,
S.
,
Hagari
,
H.
, and
Murayama
,
M.
,
2000
, “
Numerical Simulation of Condensation around the 3-D Wing
,”
Transactions of The Japan Society for Aeronautical and Space Sciences
,
42
, No.
138
, pp.
182
189
.
16.
Iriya
,
I.
,
Yamamoto
,
S.
, and
Daiguji
,
H.
,
1996
, “
Numerical Method for Transonic Viscous Flow Considering Humidity
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
62
, No.
603
, pp.
3854
3859
.
17.
Young
,
J. B.
,
1992
, “
Two-Dimensional, Nonequilibrium, Wet-Stream Calculations for Nozzles and Turbine Cascades
,”
ASME J. Turbomach.
,
114
, pp.
569
579
.
18.
Donnelly
,
R. J.
,
1993
, “
Quantized Vortices and Turbulence in Helium II
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
325
371
.
19.
Bekarevich
,
I. L.
, and
Khalatnikov
,
I. M.
,
1961
, “
Phenomenological Derivation of the Equations of Vortex Motion in Helium II
,”
Sov. Phys. JETP
,
13
, No.
3
, pp.
643
646
.
20.
Hall
,
H. E.
, and
Vinen
,
W. F.
,
1956
, “
The Rotation of Liquid Helium II, II. The Theory of Mutual Friction in Unif\ormly Rotating Helium II
,”
Proc. R. Soc. London, Ser. A
,
238
, pp.
215
234
.
21.
Tsubota
,
M.
, and
Yoneda
,
H.
,
1995
, “
Dynamics of Quantized Vortices in Rotating Superfluid
,”
J. Low Temp. Phys.
,
101
, No.
3
, pp.
815
820
.
22.
Kashani
,
A.
,
Van Sciver
,
S. W.
, and
Strikwerda
,
J. C.
,
1989
, “
Numerical Solution of Forced Convection Heat Transfer in He II
,”
Numer. Heat Transfer, Part A
,
16
, pp.
213
228
.
23.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, New York, NY, pp. 246–255.
24.
Tomiyama
,
A.
,
Zun
,
I.
,
Higaki
,
H.
,
Makino
,
Y.
, and
Sakaguchi
,
T.
,
1997
, “
A Three-Dimensional Particle Tracking Method for Bubbly Flow Simulation
,”
Nucl. Eng. Des.
,
175
, pp.
77
86
.
25.
Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw-Hill, New York, NY, pp. 460–471.
26.
Rubinow
,
S. I.
, and
Keller
,
J. B.
,
1965
, “
The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid
,”
J. Fluid Mech.
,
22
, pp.
447
459
.
27.
Auton
,
T. R.
,
1987
, “
The Lift Force on a Spherical Body in Rotational Flow
,”
J. Fluid Mech.
,
183
, pp.
199
218
.
28.
Auton
,
T. R.
,
Hunt
,
J. C. R.
, and
Prud’homme
,
M.
,
1988
, “
The Force Exerted on a Body in Invisid Unsteady Non-Uniform Rotational Flow
,”
J. Fluid Mech.
,
197
, pp.
241
257
.
29.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Share Flow
,”
J. Fluid Mech.
,
22
, Part 2, pp.
385
400
.
30.
Dennis
,
S. C. R.
,
Singh
,
S. N.
, and
Ingham
,
D. B.
,
1980
, “
The Steady Flow Due to A Rotating Sphere at Low and Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
101
, Part 2, pp.
257
279
.
31.
Takagi
,
H.
,
1977
, “
Viscous Flow Induced by Slow Rotation of Sphere
,”
J. Phys. Soc. Jpn.
,
42
, No.
1
, pp.
319
325
.
32.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, San Diego, CA, pp. 97–141.
33.
Dobran
,
F.
,
1988
, “
Liquid and Gas-Phase Distributions in A Jet With Phase Change
,”
ASME J. Heat Transfer
,
110
, pp.
955
960
.
34.
Solbrig
,
C. W.
,
McFadden
,
J. H.
,
Lyczkowski
,
R. W.
, and
Hughes
,
E. D.
,
1978
, “
Heat Transfer and Friction Correlations Required to Describe Steam-water Behavior in Nuclear Safety Studies
,”
AIChE Symp. Ser.
,
74
, No.
174
, pp.
100
128
.
35.
Hirt
,
C. W.
, and
Romero
,
N. C.
,
1975
, “Application of a Drift Flux Model to Flashing in Straight Pipes,” Los Alamos Scientific Laboratory Report, LA-6005-MS, pp.
1
16
.
36.
Maynard
,
J.
,
1976
, “
Determination of the Thermodynamics of He II from Sound-Velocity Data
,”
Phys. Rev. B
,
14
, No.
9
, pp.
3868
3891
.
37.
Moses
,
C. A.
, and
Stein
,
G. D.
,
1978
, “
On the Growth of Steam Droplets Formed in Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
ASME J. Fluids Eng.
,
100
, pp.
311
322
.
38.
Tomiyama
,
A.
, and
Hirano
,
M.
,
1994
, “
An Improvement of the Computational Efficiency of the SOLA Method
,”
JSME International Journal, Series B
,
37
, No.
4
, pp.
821
826
.
39.
Amsden
,
A. A.
, and
Harlow
,
F. H.
,
1970
, “The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows,” Los Alamos Scientific Laboratory Report, LA-4370.
You do not currently have access to this content.