Computational investigations have been performed into the behavior of an incompressible fluid flow in the vicinity of a plane symmetric channel contraction. Our aim is to determine the critical Reynolds number, above which the flow becomes asymmetric with respect to the channel geometry using the bifurcation diagram. Three channels, which are characterized by the contraction ratio, are studied and the critical Reynolds numbers are determined as 3075, 1355, and 1100 for channels with contraction ratios of 2, 4, and 8, respectively. The cause and mechanism explaining the transition from symmetric to asymmetric states in the symmetric contraction channel are also provided.

1.
Durst
,
F.
,
Schierholz
,
W. F.
, and
Wunderlich
,
A. M.
,
1987
, “
Experimental and numerical investigations of plane duct flows with sudden contraction
,”
ASME J. Fluids Eng.
,
109
, pp.
376
383
.
2.
Dennis
,
S. C. R.
, and
Smith
,
F. T.
,
1980
, “
Steady flow through a channel with a symmetrical constriction in the form of a step
,”
Proc. R. Soc. London, Ser. A
,
372
, pp.
393
414
.
3.
Hunt
,
R.
,
1990
, “
The numerical solution of the laminar flow in a constricted channel at moderately high Reynolds number using Newton iteration
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
247
259
.
4.
Hawken
,
D. M.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1991
, “
Numerical simulation of viscous flows in channels with a step
,”
Comput. Fluids
,
20
, pp.
59
75
.
5.
Huang
,
H.
, and
Seymour
,
B. R.
,
1995
, “
A finite difference method for flow in a constricted channel
,”
Comput. Fluids
,
24
, pp.
153
160
.
6.
Cherdron
,
W.
,
Durst
,
F.
, and
Whitelaw
,
J. H.
,
1978
, “
Asymmetric flows and instabilities in symmetric ducts with sudden expansions
,”
J. Fluid Mech.
,
84
, pp.
13
31
.
7.
Sobey
,
I. J.
,
1985
, “
Observation of waves during oscillating channel flow
,”
J. Fluid Mech.
,
151
, pp.
395
426
.
8.
Wille
,
R.
, and
Fernholz
,
H.
,
1965
, “
Report on the first European Mechanics Colloquium, on the Coanda effect
,”
J. Fluid Mech.
,
23
, pp.
801
819
.
9.
Ladyzhenskaya, O. A., 1963, Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, Gordon & Breach, New York.
10.
Leonard
,
B. P.
,
1979
, “
A stable and accurate convective modeling procedure based on quadratic upstream interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.
11.
Chiang
,
T. P.
,
Hwang
,
R. R.
, and
Sheu
,
W. H.
,
1996
, “
Finite volume analysis of spiral motion in a rectangular lid-driven cavity
,”
Int. J. Numer. Methods Fluids
,
23
, pp.
325
346
.
12.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE method for predicting incompressible fluid flows
,”
Numer. Heat Transfer
,
7
, pp.
147
163
.
13.
Chiang
,
T. P.
, and
Sheu
,
W. H.
,
1997
, “
Numerical prediction of eddy structure in a shear-driven cavity
,”
Computational Mechanics
,
20
, pp.
379
396
.
14.
Fearn
,
R. M.
,
Mullin
,
T.
, and
Cliffe
,
K. A.
,
1990
, “
Non linear flow phenomena in a symmetric sudden expansion
,”
J. Fluid Mech.
,
211
, pp.
595
608
.
15.
Darbandi
,
M.
, and
Schneider
,
G. E.
,
1998
, “
Numerical study of the flow behavior in the uniform velocity entry flow problem
,”
Numer. Heat Transfer
,
34
, pp.
479
494
.
16.
Hawa
,
T.
, and
Rusak
,
Z.
,
2001
, “
The dynamics of a laminar flow in a symmetric channel with a sudden expansion
,”
J. Fluid Mech.
,
436
, pp.
283
320
.
17.
Bush, B. M., 1996, The Perils of Floating Point, http://www.lahey.com/float.html, Lahey Computer System, Inc.
18.
Ueberhuber, C. W., 1997, Numerical Computation 1: Methods, Software, and Analysis, Springer-Verlag, Berlin Heidelberg.
You do not currently have access to this content.