Flows of viscoplastic fluids through sudden, conical axisymmetric contraction are studied. A finite-element numerical simulation is performed using a biviscosity approximation. Inertia is neglected. The effects of yield stress are analyzed, as are those of shear-thinning, contraction angle, and contraction ratio. The pressure losses, detailed structure of the flow such as the rigid static and moving zones, and the vortex are given in relation to these parameters. Consistent comparisons are also made with the experimental results obtained in the laboratory.
Issue Section:
Technical Papers
1.
Prager, W., 1961, Introduction to Mechanics of Continua, Ginn, Boston.
2.
Nguyen
, Q. D.
, and Boger
, D. V.
, 1992
, “Measuring the Flow Properties of Yield Stress Fluids
,” Annu. Rev. Fluid Mech.
, 24
, pp. 47
–88
.3.
Wilson
, S. D. R.
, 1993
, “Squeezing Flow of Bingham Material
,” J. Fluid Mech.
, 47
, pp. 211
–219
.4.
Piau
, J. M.
, 1996
, “Flow of a Yield Stress Fluid in a Long Domain. Application to Flow on an Inclined Plane
,” J. Rheol.
, 40
, pp. 711
–723
.5.
Piau, J. M., 1998, “Crucial Elements of Yield Stress Fluid Rheology,” Dynamic Complex Fluids, Royal Society and Imperial Press, M. Adams, ed., pp. 353–374.
6.
Barnes
, H. A.
, 1999
, “The Yield Stress—a Review or παντα ρει—Everything Flows?
” J. Non-Newtonian Fluid Mech.
, 81
, pp. 133
–178
.7.
Coupez, T., Zine, M. A., and Agassant, J. F., 1994, “Numerical Simulation of Bingham Fluid Flow,” Proceedings of the 4th European Rheology Conference, Seville, pp. 341–343.
8.
Isayev
, A. I.
, and Huang
, Y. H.
, 1993
, “Two-Dimensional Planar Flow of a Viscoelastic Plastic Medium
,” Rheol. Acta
, 32
, pp. 181
–191
.9.
Gans
, R. F.
, 1999
, “On the Flow of a Yield Strength Fluid Through a Contraction
,” J. Non-Newtonian Fluid Mech.
, 81
, pp. 184
–195
.10.
Magnin, A., and Piau, J. M., 1992, “Flow of Yield Stress Fluids Through a Sudden Change of Section,” Theoretical and Applied Rheology, P. Moldenaers and R. Keunings, eds., Elsevier, Amsterdam pp. 195–197.
11.
Mitsoulis
, E.
, Abdali
, S. S.
, and Markatos
, N. C.
, 1993
, “Flow Simulation of Herschel-Bulkley Fluids Through Extrusion Dies
,” Can. J. Chem. Eng.
, 71
, pp. 147
–160
.12.
Abdali
, S. S.
, Mitsoulis
, E.
, and Markatos
, N. C.
, 1992
, “Entry and Exit Flows of Bingham Fluids
,” J. Rheol.
, 36
, pp. 389
–407
.13.
Crochet, M. J., Davies, A. R., and Walters, K., 1984, “Numerical Simulation of Non-Newtonian Flows,” Elsevier, Amsterdam.
14.
Papanastasiou
, T. C.
, 1987
, “Flow of Material With Yield
,” J. Rheol.
, 31
, pp. 385
–404
.15.
Loest
, H.
, Lipp
, R.
, and Mitsoulis
, E.
, 1994
, “Numerical Flow Simulation of Viscoplastic Slurries and Design Criteria for a Tape Casting Unit
,” J. Am. Ceram. Soc.
, 77
, pp. 254
–262
.16.
Beaulne
, M.
, and Mitsoulis
, E.
, 1997
, “Creeping Motion of a Sphere in Tubes Filled With Herschel-Bulkley Fluids
,” J. Non-Newtonian Fluid Mech.
, 72
, pp. 55
–71
.17.
Burgos
, G. R.
, Alexandrou
, A. N.
, and Entov
, V.
, 1999
, “On the Determination of Yield Surfaces in Herschel-Bulkley Fluids
,” J. Rheol.
, 43
, pp. 463
–483
.18.
Burgos
, G. R.
, and Alexandrou
, A. N.
, 1999
, “Flow Development of Herschel-Bulkley Fluids in a Sudden Three-Dimensional Square Expansion
,” J. Rheol.
, 43
, pp. 485
–498
.19.
Alexandrou
, A. N.
, McGilvreay
, T. M.
, and Burgos
, G.
, 2001
, “Steady Herschel-Bulkley Fluid Flow in Three-Dimensional Expansions
,” J. Non-Newtonian Fluid Mech.
, 100
, pp. 77
–96
.20.
Lipscomb
, G. G.
, and Denn
, M. M.
, 1984
, “Flow of Bingham Fluids in Complex Geometries
,” J. Non-Newtonian Fluid Mech.
, 14
, pp. 337
–346
.21.
O’Donovan
, E. J.
, and Tanner
, R. I.
, 1984
, “Numerical Study of the Bingham Squeeze Film Problem
,” J. Non-Newtonian Fluid Mech.
, 15
, pp. 75
–83
.22.
Vradis
, G. C.
, and Otugen
, M. V.
, 1997
, “The Axisymmetric Sudden Expansion Flow of a Non-Newtonian Viscoplastic Fluid
,” ASME J. Fluids Eng.
, 119
, pp. 193
–199
.23.
Jay
, P.
, Magnin
, A.
, and Piau
, J. M.
, 2001
, “Viscoplastic Fluid Flow Through a Sudden Axisymmetric Expansion
,” AIChE J.
, 47
(10
), pp. 2155
–2166
.24.
Belhadri, M., Magnin, A., and Piau, J. M., 1994, Actes du 8em´e Colloque TIFAN, Toulouse, 7, pp. 29–38.
25.
Magnin
, A.
, and Piau
, J. M.
, 1990
, “Cone Plate Rheometry of a Yield Stress Fluid. Measurement of an Aqueous Gel
,” J. Non-Newtonian Fluid Mech.
, 36
, pp. 85
–108
.26.
Kim-E
, M. E.
, Brown
, R. A.
, and Armstrong
, R. C.
, 1983
, “The Roles of Inertia and Shear Thinning in Flow of Inelastic Liquid Through an Axisymmetric Contraction
,” J. Non-Newtonian Fluid Mech.
, 13
, pp. 41
–63
.27.
Nguyen
, H.
, and Boger
, D. V.
, 1979
, “The Kinematics and Stability of Die Entry Flows
,” J. Non-Newtonian Fluid Mech.
, 5
, pp. 353
–368
.28.
Boger
, D. V.
, 1987
, “Viscoelastic Flows Through Contractions
,” Annu. Rev. Fluid Mech.
, 19
, pp. 157
–182
.Copyright © 2002
by ASME
You do not currently have access to this content.