Using concepts from the subgrid-scale estimation modeling we develop a procedure for large-eddy simulations which employs Navier-Stokes equations truncated to an available mesh resolution. Operationally the procedure consists of numerically solving the truncated Navier-Stokes equation and a periodic processing of the small scale component of its solution. The modeling procedure is applied to simulate turbulent Rayleigh-Be´nard convection.
1.
Leonard, A., 1997, “
Large-Eddy Simulation of Chaotic Convection and Beyond,” AIAA Paper No. 97-0204.
2.
Geurts
, B. J.
, 1997
, “Inverse Modeling for Large-Eddy Simulation
,” Phys. Fluids
, 9
, p. 3585
3585
.3.
Stolz
, S.
, and Adams
, N. A.
, 1999
, “An Approximate Deconvolution Procedure for Large-Eddy Simulations
,” Phys. Fluids
, 11
, p. 1699
1699
.4.
Scotti
, A.
, and Meneveau
, C.
, 1999
, “A Fractal Model for Large Eddy Simulation of Turbulent Flow
,” Physica D
, 127
, pp. 198
–232
.5.
Hylin
, E. C.
, and McDonough
, J. M.
, 1999, “Chaotic Small-Scale Velocity Fields as Prospective Models for Unresolved Turbulence in an Addititve Decomposition of the Navier-Stokes Equations,” Int. J. Fluid Mech. Res., 26, p. 164.6.
Kerr
, R. M.
, Domaradzki
, J. A.
, and Barbier
, G.
, 1996
, “Small-Scale Properties of Nonlinear Interactions and Subgrid-Scale Energy Transfer in Isotropic Turbulence
,” Phys. Fluids
, 8
, p. 197
197
.7.
Foias
, C.
, Manley
, O. P.
, and Temam
, R.
, 1991
, “Approximate Inertial Manifolds and Effective Eddy Viscosity in Turbulent Flows
,” Phys. Fluids A
, 3
, p. 898
898
.8.
Dubois, T., Jauberteau, F., and Temam, R., 1999, Dynamic Multilevel Methods and the Numerical Simulation of Turbulence, Cambridge University Press, Cambridge, UK.
9.
Zhou
, Y.
, Brasseur
, J. G.
, Juneja
, A.
, and Wyngaard
, J. C.
, 2001
, “A Resolvable Subfilter-Scale Model Specific to Large-Eddy Simulation of Near-Wall Turbulence
,” Phys. Fluids
, 13
, p. 2602
2602
.10.
Domaradzki
, J. A.
, and Saiki
, E. M.
, 1997
, “A Subgrid-Scale Model Based on the Estimation of Unresolved Scales of Turbulence
,” Phys. Fluids
, 9
, p. 2148
2148
.11.
Domaradzki
, J. A.
, and Loh
, K. C.
, 1999
, “The Subgrid-Scale Estimation Model in the Physical Space
,” Phys. Fluids
, 11
, p. 2330
2330
.12.
Loh
, K. C.
, and Domaradzki
, J. A.
, 1999
, “The Subgrid-Scale Estimation Model on Non-uniform Grids
,” Phys. Fluids
, 11
, p. 3786
3786
.13.
Domaradzki, J. A., Dubois, T., and Honein, A., 1998, “The Subgrid-Scale Estimation Model Applied to Large Eddy Simulations of Compressible Turbulence,” Proceedings of the 1998 Summer Program, Center for Turbulence Research, NASA Ames, Stanford, p. 351.
14.
Dubois
, T.
, Domaradzki
, J. A.
, and Honein
, A.
, 2002
, “The Subgrid-Scale Estimation Model Applied to Large Eddy Simulations of Compressible Turbulence
,” Phys. Fluids
, 14
, p. 1781
1781
.15.
Domaradzki
, J. A.
, and Horiuti
, K.
, 2001
, “Similarity Modeling on an Expanded Mesh Applied to Rotating Turbulence
,” Phys. Fluids
, 13
, p. 3510
3510
.16.
Kimmel
, S. J.
, and Domaradzki
, J. A.
, 2000
, “Large Eddy Simulations of Rayleigh-Be´nard Convection Using Subgrid Scale Estimation Model
,” Phys. Fluids
, 12
, p. 169
169
.17.
Domaradzki
, J. A.
, and Yee
, P. P.
, 2000
, “The Subgrid-Scale Estimation Model for High Reynolds Number Turbulence
,” Phys. Fluids
, 12
, p. 193
193
.18.
Yee, P. P., 2000, “A Velocity Estimation Model for Large Eddy Simulations of High Reynolds Number Homogeneous, Isotropic Turbulence,” Ph.D. thesis, University of Southern California.
19.
Loh, K.-C., 2000, “The Subgrid-Scale Estimation Procedure in the Physical Space Representation,” Ph.D. thesis, University of Southern California.
20.
Domaradzki
, J. A.
, Loh
, K. C.
, and Yee
, P. P.
, 2002
, “Large Eddy Simulations Using the Subgrid-Scale Estimation Model and Truncated Navier-Stokes Dynamics
,” Theor. Comput. Fluid Dyn.
, 15
, pp. 421
–450
.21.
Boris
, J. P.
, Grinstein
, F. F.
, Oran
, E. S.
, and Kolbe
, R. L.
, 1992
, “New Insights Into Large Eddy Simulation
,” Fluid Dyn. Res.
, 10
, pp. 199
–228
.22.
Karamanos
, G.-S.
, and Karniadakis
, G. E.
, 2000
, “A Spectral Vanishing Viscosity Method for Large-Eddy Simulations
,” J. Comput. Phys.
, 163
, pp. 22
–50
.23.
Margolin
, L. G.
, and Rider
, W. J.
, 2003
, “A Rationale for Implicit Turbulence Modeling
,” Int. J. Numer. Math. Fluids
, 39
, p. 821
821
.24.
Adams
, N. A.
, 2001
, “The Use of LES Subgrid-Scale Models for Shock-Capturing
,” Int. J. Numer. Math. Fluids
, 39
, p. 783
783
.25.
Lesieur, M., Turbulence in Fluids, 2nd Ed., Kluwer Academic Publishers, Dordrecht.
26.
Chan, D. C., 1996, “Effects of Rotation on Turbulent Convection: Direct Numerical Simulation Using Parallel Computers,” Ph.D. thesis, University of Southern California.
27.
Deardorff
, J. W.
, and Willis
, G. E.
, 1967
, “Investigation of Turbulent Thermal Convection Between Horizontal Plates
,” J. Fluid Mech.
, 28
, p. 675
675
.28.
Christie
, S.
, and Domaradzki
, J. A.
, 1993
, “Numerical Evidence for Nonuniversality of the Soft/Hard Turbulence Classification for Thermal Convection
,” Phys. Fluids
, 5
, p. 412
412
.29.
Kerr
, R.
, 1996
, “Rayleigh Number Scaling in Numerical Convection
,” J. Fluid Mech.
, 310
, p. 139
139
.30.
Lund, T. S., and Kaltenbach, H.-J., 1995, “Experiments With Explicit Filtering for LES Using a Finite-Difference Method,” Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 91–105.
Copyright © 2002
by ASME
You do not currently have access to this content.