Expressions for the mass entrained in transient turbulent radial and wall-impinging jets are derived by employing scaling laws derived for quasi-steady jets. Quantitative values of the mass entrained in these jets are compared with that in the round jet through an analytical study. In the case of the round jet, the expression has been derived and reported in the literature. It is shown that the ratio of mass entrained in transient radial and round jets for the same mass and momentum flow rates has a constant value with respect to time. In the case of the wall-impinging jet, it is shown that the ratio of the mass entrained in the jet to that in the round jet is a function of the impinging distance and time. The increase in entrained mass with increase in jet penetration in the fully developed region is slower in the wall-impinging jet than in the round jet.

1.
Arcoumanis
,
C.
,
Cutter
,
P.
, and
Whitelaw
,
D. S.
,
1998
, “
Heat Transfer Process in Diesel Engines
,”
Trans. Inst. Chem. Eng.
,
76
, Part A, pp.
124
132
.
2.
Abraham, J., Khan, A., and Magi, V., 1999, “Jet-Jet and Jet-Wall Interactions of Transient Jets From Multi-Hole Injectors,” SAE Paper 1999-0-0513.
3.
Song, L., and Abraham, J., 2001, “Effect of Injector Hole Size, Number and Orientation on Diesel Engine Emissions,” Proceedings of the Second Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, The Combustion Institute, Pittsburgh, PA.
4.
Dec, J. E., and Tree, D. R., 2001, “Diffusion-Flame/Wall Interactions in a Heavy-Duty DI Diesel Engine,” SAE Paper 2001-01-1295.
5.
Schlichting, H., 1968, Boundary Layer Theory, McGraw-Hill, New York.
6.
Rajaratnam, N., 1976, Turbulent Jets, Elsevier, New York.
7.
Abramovich, G. N., 1963, The Theory of Turbulent Jets, MIT Press, Cambridge, MA.
8.
Post
,
S.
,
Iyer
,
V.
, and
Abraham
,
J.
,
2000
, “
A Study of Near-Field Entrainment in Gas Jets and Sprays Under Diesel Conditions
,”
ASME J. Fluids Eng.
,
122
, pp.
385
395
.
9.
Schwarz
,
W. H.
,
1963
, “
The Radial Free Jet
,”
Chem. Eng. Sci.
,
18
, pp.
779
786
.
10.
Hunt
,
G. R.
, and
Ingham
,
D. B.
,
1998
, “
Laminar and Turbulent Radial Jets
,”
Acta Mech.
,
127
, pp.
25
38
.
11.
Heskestad
,
G.
,
1966
, “
Hot-Wire Measurements in a Radial Turbulent Jet
,”
ASME J. Appl. Mech.
,
33
, pp.
417
424
.
12.
Glauert
,
M. B.
,
1956
, “
The Wall Jet
,”
J. Fluid Mech.
,
1
, Part 6, pp.
625
643
.
13.
Bakke
,
P.
,
1957
, “
An Experimental Investigation of a Wall Jet
,”
J. Fluid Mech.
,
2
, pp.
467
472
.
14.
Ricou
,
F.
, and
Spalding
,
D.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
, pp.
21
32
.
15.
Abraham
,
J.
,
1996
, “
Entrainment Characteristics of Transient Gas Jets
,”
Numer. Heat Transfer, Part A
,
30
, pp.
347
364
.
16.
Andriani, R., Coghe, A., and Cossali, G. E., 1996, “Near-Field Entrainment in Unsteady Gas Jets and Diesel Sprays: A Comparative Study,” Proceedings of the Combustion Institute, 26, The Combustion Institute, Pittsburgh, PA, pp. 2549–2556.
17.
Poreh, M., and Cermak, J. E., 1959, “Flow Characteristics of a Circular Submerged Jet Impinging Normally on a Smooth Boundary,” Proceedings of the Sixth Midwestern Conference on Fluid Mechanics, University of Texas, Austin, TX, American Physical Society, Ridge, NY, pp. 198–212.
18.
Witze
,
P. O.
, and
Dwyer
,
H. A.
,
1976
, “
The Turbulent Radial Jet
,”
J. Fluid Mech.
,
75
, Part 3, pp.
401
417
.
19.
Wood
,
P. E.
, and
Chen
,
C. P.
,
1985
, “
Turbulence Model Predictions of Radial Jet—A Comparison of k-ε models
,”
Can. J. Chem. Eng.
,
63
, pp.
117
182
.
20.
Rubel
,
A.
,
1985
, “
On the Vortex Stretching Modification of the k-ε Turbulence Model: Radial Jets
,”
AIAA J.
,
23
, pp.
1129
1130
.
21.
Malin
,
M. R.
,
1988
, “
Prediction of Radially Spreading Turbulent Jets
,”
AIAA J.
,
26
, pp.
181
191
.
22.
Wilcox, D. C., 1998, Turbulence Modeling for CFD, DCW Industries, Inc. CA.
23.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1974
, “
Impinging Circular Turbulent Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
100
, pp.
1313
1328
.
24.
Fujimoto, H., Nogami, M., Hyun, G., Hirakawa, K., Asai, T., and Senda, J., 1997, “Characteristics of Free and Impinging Gas Jets by Means of Image Processing,” SAE Paper 970045.
25.
Poreh
,
M.
,
Tsuei
,
Y. G.
, and
Cermak
,
J. E.
,
1967
, “
Investigation of A Turbulent Radial Wall Jet
,”
ASME J. Appl. Mech.
,
34
, pp.
457
463
.
26.
Witze, P. O., and Dwyer H. A., 1977, “Impinging Axisymmetric Turbulent Flows: The Wall Jet, the Radial Jet and Opposing Free Jets,” Proceedings of the 1st Symposium on Turbulent Shear Flows, Springer-Verlag, New York, pp. 2.33–2.39.
27.
Tanaka
,
T.
, and
Tanaka
,
E.
,
1977
, “
Experimental Studies of a Radial Turbulent Jet (2nd Report, Wall Jet on a Flat Smooth Plate)
,”
Bull. JSME
,
20
, pp.
209
215
.
28.
Kuo, T. W., and Bracco, F. V., 1982, “On the Scaling of Transient Laminar, Turbulent, and Spray Jets,” SAE Paper 820133.
29.
Iyer
,
V.
, and
Abraham
,
J.
,
1997
, “
Penetration and Dispersion of Transient Gas Jets and Sprays
,”
Combust. Sci. Technol.
,
130
, pp.
315
334
.
30.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jets
,”
J. Fluid Mech.
,
38
, pp.
577
612
.
31.
Sangras
,
R.
,
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
2002
, “
Self-Preserving Properties of Unsteady Round Nonbuoyant Turbulent Starting Jets and Puffs in Still Fluids
,”
ASME J. Heat Transfer
,
124
, pp.
460
469
.
You do not currently have access to this content.