A numerical study was conducted to predict the dynamics of gas/liquid flows in a partially filled cylinder undergoing moderate to rapid rotation. Two specific problems were considered: spinup from rest of a partially filled circular container and the steady flow field in a partially filled rotating circular cylinder with an overrotating lid. Numerical solutions of the time-dependent axisymmetric Navier-Stokes equations were obtained by using a homogeneous multiphase model. The evolution of the free surface along with the flow fields in both the gas and liquid phases are predicted. The computed results were compared with available experimental data. Details of flow field structures are examined by studying the numerical solutions. Radial profiles of axial and azimuthal velocities for both the liquid and gas phases are also presented. The model developed can be used for analyzing flows and mixing problems in complex-geometry centrifuges.

1.
Greenspan
,
H. P.
, and
Howard
,
L. N.
,
1963
, “
On Time-Dependent Motion of a Rotating Fluid
,”
J. Fluid Mech.
,
17
, pp.
385
404
.
2.
Warn-Varnas
,
A.
,
Fowlis
,
W. W.
,
Piacsek
,
S.
, and
Lee
,
S. M.
,
1978
, “
Numerical Solutions and Laser-Doppler Measurements of Spin-up
,”
J. Fluid Mech.
,
85
, pp.
609
639
.
3.
Benton
,
E. R.
, and
Clark
, Jr.,
A.
,
1974
, “
Spin-up
,”
Annu. Rev. Fluid Mech.
,
6
, pp.
259
280
.
4.
Duck
,
P.
, and
Foster
,
M.
,
2001
, “
Spin-up of Homogeneous and Stratified Fluids
,”
Annu. Rev. Fluid Mech.
,
33
, pp.
231
263
.
5.
Wedemeyer
,
E. H.
,
1964
, “
The Unsteady Flow Within a Spinning Cylinder
,”
J. Fluid Mech.
,
20
, pp.
383
399
.
6.
Kitchens
, Jr.,
C. W.
,
1980
, “
Ekman Compatibility Conditions in Wedemeyer Spin-up Model
,”
Phys. Fluids
,
23
, pp.
1062
1064
.
7.
Kitchens
, Jr.,
C. W.
,
1980
, “
Navier-Stokes Equations for Spin-up in a Filled Cylinder
,”
AIAA J.
,
18
, pp.
929
934
.
8.
Hyun
,
J. M.
,
Leslie
,
F.
,
Fowlis
,
W. W.
, and
Warn-Varnas
,
A.
,
1983
, “
Numerical Solutions for Spin-up From Rest in a Cylinder
,”
J. Fluid Mech.
,
127
, pp.
263
281
.
9.
Watkins
,
W. B.
, and
Hussey
,
R. G.
,
1977
, “
Spin-up From Rest in a Cylinder
,”
Phys. Fluids
,
20
, pp.
1596
1604
.
10.
Goller
,
H.
, and
Ranov
,
T.
,
1968
, “
Unsteady Rotating Flow in a Cylinder With a Free Surface
,”
ASME J. Basic Eng.
,
90
, pp.
445
454
.
11.
Homicz, G. F., and Gerber, N., 1986, “Numerical Model for Fluid Spin-up From Rest in a Partially Filled Cylinder,” AIAA Paper 86-1121, pp. 1–9.
12.
Homicz
,
G. F.
, and
Gerber
,
N.
,
1987
, “
Numerical Model for Fluid Spin-up From Rest in a Partially Filled Cylinder
,”
ASME J. Fluids Eng.
,
109
, pp.
194
197
.
13.
Choi
,
S.
,
Kim
,
J. W.
, and
Hyun
,
J. M.
,
1989
, “
Transient Free Surface Shape in an Abruptly Rotating, Partially Filled Cylinder
,”
ASME J. Fluids Eng.
,
111
, pp.
439
443
.
14.
Choi
,
S.
,
Kim
,
J. W.
, and
Hyun
,
J. M.
,
1991
, “
Experimental Investigation of the Flow With a Free Surface in an Impulsively Rotating Cylinder
,”
ASME J. Fluids Eng.
,
113
, pp.
245
249
.
15.
Shadday
,
M. A.
,
Ribando
,
R. J.
, and
Kauzlarich
,
J. J.
,
1983
, “
Flow of an Incompressible Fluid in a Partially Filled, Rapidly Rotating Cylinder With a Differentially Rotating Endcap
,”
J. Fluid Mech.
,
130
, pp.
203
218
.
16.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1996
, “
A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media—I. Model Development
,”
Int. J. Heat Mass Transfer
,
39
, pp.
3607
3618
.
17.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.
18.
Schlichting, H., 1962, Boundary Layer Theory, 4th Ed., McGraw-Hill, New York (translated by J. Kestir).
19.
Freitas
,
C. J.
,
Street
,
R. L.
,
Findikakis
,
A. N.
, and
Koseff
,
J. R.
,
1985
, “
Numerical Simulations of Three-Dimensional Flows in a Cavity
,”
Int. J. Numer. Methods Fluids
,
5
, pp.
561
575
.
20.
Gerber
,
N.
,
1975
, “
Properties of Rigidly Rotating Liquids in Closed Partially Filled Cylinders
,”
ASME J. Appl. Mech.
,
97
, pp.
734
735
.
21.
Stewartson
,
K.
,
1957
, “
On Almost Rigid Rotations
,”
J. Fluid Mech.
,
3
, pp.
17
26
.
22.
Ribando
,
R. J.
, and
Shadday
,
M. A.
,
1984
, “
The Ekman Matching Condition in a Partially Filled, Rapidly Rotating Cylinder
,”
J. Comput. Phys.
,
53
, pp.
266
288
.
You do not currently have access to this content.