A two-dimensional liquid metal droplet moving into magnetic field gradient regions in a vacuum space in the absence of gravity has been simulated in VOF-CSF method. The general one-fluid VOF model for tracking free surfaces, and associated CSF model for applying surface tension to free surfaces are formulated. The calculations show us that the droplet encounters strong magnetohydrodynamics (MHD) drag from the field gradient along moving path. Interaction of liquid motion with a magnetic field induces electrical currents and Lorentz force on the droplet. The force is always to oppose the liquid motion in both increased and decreased field conditions. More attention is given to understanding the MHD equations and numerical results.

1.
Abdou
,
M. A.
,
Ying
,
A.
,
Morley
,
N.
et al.
,
2001
, “
On the Exploration of Innovative Concepts for Fusion Chamber Technology-APEX Interim Report Overview
,”
Fusion Eng. Des.
,
54
, pp.
181
247
.
2.
Branover, H., 1978, Magnetohydrodynamic Flows in Ducts, Israel University Press, Jerusalem, Israel.
3.
Hunt
,
J. C. R.
, and
Shercliff
,
J. A.
,
1971
, “
Magnetohydrodynamics at High Hartmann Number
,”
Annu. Rev. Fluid Mech.
,
3
, pp.
37
62
.
4.
Lielausis
,
O.
,
1975
, “
Liquid-Metal Magnetohydrodynamics
,”
At. Energy Rev.
,
13
, pp.
527
581
.
5.
Sellers
,
C. C.
, and
Walker
,
J. S.
,
1999
, “
Liquid Metal Flow in an Electrically Insulated Rectangular Duct With a Non-Uniform Magnetic Field
,”
Int. J. Eng. Sci.
,
37
(
5
), pp.
541
552
.
6.
Gao
,
D.
, and
Morley
,
N. B.
,
2002
, “
Equilibrium and Initial Linear Stability Analysis of Liquid Metal Falling Film Flows in a Varying Spanwise Magnetic Field
,”
Magnetohydrodynamics
,
38
, pp.
359
375
.
7.
Gao
,
D.
,
Morley
,
N. B.
, and
Dhir
,
V.
,
2002
, “
Numerical Study of Liquid Metal Film Flows in a Varying Spanwise Magnetic Field
,”
Fusion Eng. Des.
,
63–64
, pp.
369
374
.
8.
Morley
,
N. B.
,
Smolentsev
,
S.
, and
Gao
,
D.
,
2002
, “
Modeling Infinite/Axisymmetric Liquid Metal Magnetohydrodynamic Free Surface Flows
,”
Fusion Eng. Des.
,
63–64
, pp.
343
351
.
9.
Morley
,
N. B.
,
Smolentsev
,
S.
,
Munipalli
,
R.
,
Ni
,
M.-J.
,
Gao
,
D.
, and
Abdou
,
M.
,
2003
, “
Modeling of Liquid Metal Free Surface MHD Flow for Fusion Liquid Walls
,”
Fusion Eng. Des.
10.
Gao, D., 2003, “Numerical Simulation of Surface Wave Dynamics of Liquid Metal MHD Flow on an Inclined Plane in a Magnetic Field With Spatial Variation,” Ph.D. Dissertation, University of California, Los Angeles.
11.
Kothe, D. B., Mjolsness, R. C., and Torrey, M. D., 1991, “RIPPLE: A Computer Program for Incompressible Flows With Free Surfaces,” LA-12007-MS, Los Alamos National Laboratory.
12.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comp. Physiol.
,
141
, pp.
112
152
.
13.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
567
603
.
14.
Puckett
,
E. G.
,
Almgren
,
A. S.
,
Bell
,
J. B.
et al.
,
1997
, “
A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows
,”
J. Comput. Phys.
,
130
, pp.
269
282
.
15.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continnum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.
16.
Popinet
,
S.
, and
Zaleski
,
S.
,
1999
, “
A Front-Tracking Algorithm for Accurate Representation of Surface Tension
,”
Int. J. Numer. Mech. Fluids
,
30
, pp.
775
793
.
17.
Gao
,
D.
,
Morley
,
N. B.
, and
Dhir
,
V.
,
2003
, “
Numerical Simulation of Wavy Falling Film Flows Using VOF Method
,”
J. Comput. Phys.
, to appear.
You do not currently have access to this content.