Modeling the pressure-diffusion process is discussed to improve the prediction of turbulent recirculating flows by a second moment closure. Since the recent DNS research of a turbulent recirculating flow by Yao et al. [Theore. Comput. Fluid Dynamics 14 (2001) 337–358] suggested that the pressure-diffusion process of the turbulence energy was significant in the recirculating region, the present study focuses on the rapid part of the process consisting of the mean shear. This rapid pressure-diffusion model is developed for the Reynolds stress equation using the two-component-limit turbulence condition and added to a low Reynolds number two-component-limit full second moment closure for evaluation. Its effects are discussed through applications of turbulent recirculating flows such as a trailing-edge and a back-step flows. Encouraging results are obtained though some margins to be improved still remain.

1.
Yao
,
Y. F.
,
Thomas
,
T. G.
,
Sandham
,
N. D.
, and
Williams
,
J. J. R.
,
2001
, “
Direct numerical simulation of turbulent flow over a rectangular trailing edge
,”
Theore. Comput. Fluid Dynamics
,
14
, pp.
337
358
.
2.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport equation in turbulence
,”
Phys. Fluids
,
13
, pp.
2634
2649
.
3.
Hanjalic´
,
K.
, and
Launder
,
B. E.
,
1972
, “
A Reynolds stress model of turbulence and its application to thin shear flows
,”
J. Fluid Mech.
,
52
(
4
), pp.
609
638
.
4.
Mellor
,
G. L.
, and
Herring
,
H. J.
,
1973
, “
A survey of mean turbulent field closure
,”
AIAA J.
,
11
, pp.
590
599
.
5.
Lumley
,
J. L.
,
1978
, “
Computational modeling of turbulent flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
6.
Demuren
,
A. O.
, and
Sarkar
,
S.
,
1993
, “
Perspective: Systematic study of Reynolds stress closure models in the computations of plane channel flows
,”
ASME J. Fluids Eng.
,
115
, pp.
5
12
.
7.
Schwarz
,
W. R.
, and
Bradshaw
,
P.
,
1994
, “
Term-by-term tests of stress-transport turbulence models in a three-dimensional boundary layer
,”
Phys. Fluids
,
6
(
2
), pp.
986
998
.
8.
Straatman
,
A. G.
,
Stubley
,
G. D.
, and
Raithby
,
G. D.
,
1998
, “
Examination of diffusion modeling using zero-mean-shear turbulence
,”
AIAA J.
,
36
(
6
), pp.
929
935
.
9.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
,
1988
, “
Reynolds-stress and dissipation-rate budgets in a turbulent channel flow
,”
J. Fluid Mech.
,
194
, pp.
15
44
.
10.
Spalart
,
P. R.
,
1988
, “
Direct simulation of a turbulent boundary layer up to Rθ=1410,
J. Fluid Mech.
,
187
, pp.
61
98
.
11.
Kawamura, H., and Kawashima, N., 1994, “A proposal of k-ε model with relevance to the near-wall turbulence,” Proc. Int. Symp. on Turbulence, Heat and Mass Transfer, Lisbon, Vol. 2, P.I.1.1-P.I.1.4.
12.
Nagano
,
Y.
, and
Shimada
,
M.
,
1995
, “
Rigorous modeling of dissipation-rate equation using direct simulations
,”
JSME Int. J., Ser. B
,
38
, pp.
51
59
.
13.
Yoshizawa
,
A.
,
1987
, “
Statistical modeling of a transport equation for the kinetic energy dissipation rate
,”
Phys. Fluids
,
30
, pp.
628
631
.
14.
Craft
,
T. J.
, and
Launder
,
B. E.
,
1996
, “
A Reynolds-stress closure designed for complex geometries
,”
Int. J. Heat Fluid Flow
,
17
, pp.
245
254
.
15.
Hanjalic´, K., and Obi, S. (editors), 1997, “Case 6.3 Flow around surface-mounted cubical obstacle,” Proc. The sixth ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling, TU Delft, The Netherlands.
16.
Yoshizawa
,
A.
,
2002
, “
Statistical analysis of mean-flow effects on the pressure-velocity correlation
,”
Phys. Fluids
,
14
, pp.
1736
1744
.
17.
Fu, S., 1988, “Computational modeling of turbulent swirling flows with second-moment closures,” Ph.D. Thesis, UMIST, Manchester.
18.
Batten
,
P.
,
Craft
,
T. J.
,
Leschziner
,
M. A.
, and
Loyau
,
H.
,
1999
, “
Reynolds-stress-transport modeling for compressible aerodynamics applications
,”
AIAA J.
,
37
, pp.
785
797
.
19.
Kasagi
,
N.
, and
Matsunaga
,
A.
,
1995
, “
Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow
,”
Int. J. Heat Fluid Flow
,
16
, pp.
477
485
.
20.
Lumley
,
J. L.
,
1975
, “
Pressure strain correlation
,”
Phys. Fluids
,
19
, p.
750
750
.
21.
Suga
,
K.
,
Nagaoka
,
M.
,
Horinouchi
,
N.
,
Abe
,
K.
, and
Kondo
,
Y.
,
2001
, “
Application of a three equation cubic eddy viscosity model to 3-D turbulent flows by the unstructured grid method
,”
Int. J. Heat Fluid Flow
,
22
(
3
), pp.
259
271
.
22.
Issa
,
R.
,
1985
, “
Solution of implicitly discretized fluid flow equations by operator splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.
23.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical study of the turbulent flow past an airfoil with trailing edge separation
,”
AIAA J.
,
21
, pp.
1525
1532
.
24.
van Albada
,
G. D.
,
van Leer
,
B.
, and
Roberts
,
W. W.
,
1991
, “
A comparative study of computational methods in cosmic gas dynamics
,”
Astron. Astrophys.
,
29
(
7
), pp.
1092
1110
.
25.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct numerical simulation of turbulent flow over a backward-facing step
,”
J. Fluid Mech.
,
330
, pp.
349
374
.
26.
Iacovides
,
H.
, and
Raisee
,
M.
,
1999
, “
Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades
,”
Int. J. Heat Fluid Flow
,
20
, pp.
320
328
.
You do not currently have access to this content.