Abstract

An adaptive wavelet-based method provides an alternative means to refine grids according to local demands of the physical solution. One of the prominent challenges of such a method is the application to problems defined on complex domains. In the case of incompressible flow, the application to problems with complicated domains is made possible by the use of the Navier-Stokes–Brinkman equations. These equations take into account solid obstacles by adding a penalized velocity term in the momentum equation. In this study, an adaptive wavelet collocation method, based on interpolating wavelets, is first applied to a benchmark problem defined on a simple domain to demonstrate the accuracy and efficiency of the method. Then the penalty technique is used to simulate flows over obstacles. The numerical results are compared to those obtained by other computational approaches as well as to experiments.

1.
Berger
,
M. J.
, and
Colella
,
P.
, 1989, “
Local Adaptive Mesh Refinement for Shock Hydrodynamics
,”
J. Comput. Phys.
0021-9991
82
, pp.
64
68
.
2.
Mackerle
,
J.
, 2001, “
Error Estimates and Adaptive Finite Element Methods: A Bibliography (1990 - 2000)
,”
Eng. Comput.
0264-4401
18
, pp.
802
914
.
3.
Daubechies
,
I.
, 1992,
Ten Lectures on Wavelets
,
SIAM
, Philadelphia.
4.
Liandrat
,
J.
, and
Tchamitchian
,
P.
, 1990,
Resolution of the 1D Regularized Burgers Equation Using a Spatial Wavelet Approximation
, ICASE Report 90—83, NASA.
5.
Fröhlich
,
J.
, and
Schneider
,
K.
, 1994, “
An Adaptive Wavelet Galerkin Algorithm for One-Dimensional and 2-Dimensional Flame Computations
,”
Eur. J. Mech. B/Fluids
0997-7546
13
, pp.
439
471
.
6.
Vasilyev
,
O. V.
, and
Paolucci
,
S.
, 1996, “
Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain
,”
J. Comput. Phys.
0021-9991
125
, pp.
498
512
.
7.
Vasilyev
,
O. V.
, and
Paolucci
,
S.
, 1997, “
A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs
,”
J. Comput. Phys.
0021-9991
138
, pp.
16
56
.
8.
Bertoluzza
,
S.
, 1996, “
Adaptive Wavelet Collocation Method for the Solution of Burgers Equation
,”
Transp. Theory Stat. Phys.
0041-1450
25
, pp.
339
359
.
9.
Rastigejev
,
Y.
, and
Paolucci
,
S.
, 2003, “
Wavelet Based Adaptive Multiresolution Computation of Viscous Reactive Flows
,” [Submitted].
10.
Holmström
,
M.
, 1999. “
Solving Hyperbolic PDEs Using Interpolating Wavelets
,”
SIAM J. Sci. Comput. (USA)
1064-8275
21
, pp.
405
420
.
11.
Rastigejev
,
Y.
, 2002,
Multiscale Computations with a Wavelet Adaptive Algorithm
, Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
12.
Marchuck
,
G. I.
,
Kuznetsov
,
Y.
, and
Matsokin
,
A. M.
, 1986, “
Fictitious Domain and Domain Decomposition Methods
,”
Sov. J. Num. Anal. Math. Model.
,
1
, pp.
3
35
.
13.
Glowinski
,
R.
,
Pan
,
T. W.
,
Hesla
,
T. I.
,
Joseph
,
D. D.
, and
Périaux
,
J.
, 2001, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
363
426
.
14.
Peskin
,
C. S.
, 1977, “
Numerical Analysis of Blood Flow in Heart
,”
J. Comput. Phys.
0021-9991
25
, pp.
220
252
.
15.
Beyer
,
R. P.
, 1992. “
A Computational Model of the Cochlea Using the Immersed Boundary Method
,”
J. Comput. Phys.
0021-9991
98
, pp.
145
162
.
16.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, 1993, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
0021-9991
105
, pp.
354
366
.
17.
Angot
,
P.
,
Bruneau
,
C.-H.
, and
Fabrie
,
P.
, 1999, “
A Penalization Method to Take Into Account Obstacles in Incompressible Viscous Flows
,”
Numer. Math.
0029-599X
81
, pp.
497
520
.
18.
Beyer
,
R. P.
, and
Leveque
,
R. J.
, 1992, “
Analysis of a One-Dimensional Model for the Immersed Boundary Method
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429
29
, pp.
332
364
.
19.
Khadra
,
K.
,
Angot
,
P.
,
Parneix
,
S.
, and
Caltagirone
,
J.-P.
, 2000, “
Fictitious Domain Approach for Numerical Modeling of Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091
34
, pp.
651
684
.
20.
Donoho
,
D.
, 1992,
Interpolating Wavelet Transform, Report, Dep. of Statistics
, Stanford University.
21.
Deslauriers
,
G.
, and
Dubuc
,
S.
, 1989, “
Symmetric Iterative Interpolation Processes
,”
Constructive Approx.
0176-4276
5
, pp.
49
68
.
22.
Saito
,
N.
, and
Beylkin
,
G.
, 1993, “
Multiresolution Representations Using the Auto-Correlation Functions of Compactly Supported wavelets
,”
IEEE Trans. Signal Process.
1053-587X
41
, pp.
3584
3590
.
23.
Bertoluzza
,
S.
, 1997, “
An Adaptive Collocation Method Based on Interpolating Wavelets
,” in
Multiscale Wavelet Methods for Partial Differential Equations
,
W.
D.
et al.
, eds., Vol.
6
of
Wavelet Analysis and Its Applications
,
Academic
, New York, pp.
109
135
.
24.
Dahmen
,
W.
, 1997, “
Wavelet and Multiscale Methods for Operator Equations
,”
Acta Numerica
0962-4929
6
, pp.
55
228
.
25.
Jameson
,
L.
, 1998, “
A Wavelet-Optimized, Very High Order Numerical Method
,”
SIAM J. Sci. Comput. (USA)
1064-8275
19
, pp.
1980
2013
.
26.
Bertoluzza
,
S.
, 1995, “
Adaptive Wavelet Collocation for the Solution of Steady-State Equations
,” in Wavelet Applications II: April 17-21, Orlando,
Proc. SPIE
0277-786X
2491
, pp.
947
956
.
27.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equation
,”
J. Comput. Phys.
0021-9991
59
, pp.
308
323
.
28.
Gresho
,
P. M.
, 1990, “
On the Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and Its Implementation Via a Finite Element Method That Also Introduces a Nearly Consistent Mass Matrix Part I: Theory
,”
Int. J. Numer. Methods Fluids
0271-2091
11
, pp.
587
620
.
29.
Timmermans
,
L. J. P.
,
Minev
,
P. D.
, and
Van De Vosse
,
F. N.
, 1996, “
An Approximate Projection Scheme for Incompressible Flow Using Spectral Elements
,”
Int. J. Numer. Methods Fluids
0271-2091
22
, pp.
673
688
.
30.
Jin
,
G.
, and
Braza
,
M.
, 1993, “
A Nonreflecting Outlet Boundary Condition for Incompressible Unsteady Navier-Stokes Calculations
,”
J. Comput. Phys.
0021-9991,
107
, pp.
239
253
.
31.
Zdravkovich
,
M. M.
, 1977, “
Review of Flow Interference Between Two Circular Cylinders in Various Arrangements
,”
ASME J. Fluids Eng.
0098-2202
99
, pp.
618
633
.
32.
Griebel
,
M.
,
Dornseifer
,
T.
, and
Neunhoeffer
,
T.
, 1998,
Numerical Simulation in Fluid Dynamics: A Practical Introduction
,
SIAM
, Philadelphia, PA.
33.
Shen
,
J.
, 1991, “
Hopf-Bifucation of the Unsteady Regularized Driven Cavity Flow
,”
J. Comput. Phys.
0021-9991
95
, pp.
228
245
.
34.
Botella
,
O.
, and
Peyret
,
R.
, 1998, “
Benchmark Spectral Results on the Lid-Driven Cavity Flow
,”
Comput. Fluids
0045-7930
27
, pp.
421
433
.
35.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
-
411
.
36.
Sani
,
R. L.
, and
Gresho
,
P. M.
, 1994, “
Résumé and Remarks on the Open Boundary Condition Minisymposium
,”
Int. J. Numer. Methods Fluids
0271-2091
18
, pp.
983
1008
.
37.
Ol’shanskii
,
M. A.
, and
Staroverov
,
V. M.
, 2000, “
On Simulation of Outflow Boundary Conditions in Finite Difference Calculations for Incompressible Fluid
,”
Int. J. Numer. Methods Fluids
0271-2091,
33
, pp.
449
534
.
38.
Meneghini
,
J. R.
,
Saltara
,
F.
,
Siqueira
,
C. L. R.
, and
Ferrari
Jr.,
J. A.
, 2001, “
Numerical Simulation of Flow Interference Between Two Cylinders in Tandem and Side-By-Side Arrangements
,”
J. Fluids Struct.
0889-9746
15
, pp.
327
350
.
You do not currently have access to this content.