In this contribution we consider large-eddy simulation (LES) using the high-pass filtered (HPF) Smagorinsky model of a spatially developing supersonic turbulent boundary layer at a Mach number of 2.5 and momentum-thickness Reynolds numbers at inflow of 4500. The HPF eddy-viscosity models employ high-pass filtered quantities instead of the full velocity field for the computation of the subgrid-scale (SGS) model terms. This approach has been proposed independently by Vreman (Vreman, A. W., 2003, Phys. Fluids, 15, pp. L61–L64) and Stolz et al. (Stolz, S., Schlatter, P., Meyer, D., and Kleiser, L., 2003, in Direct and Large Eddy Simulation V, Kluwer, Dordrecht, pp. 81–88). Different from classical eddy-viscosity models, such as the Smagorinsky model (Smagorinsky, J., 1963, Mon. Weath. Rev, 93, pp. 99–164) or the structure-function model (Métais, O. and Lesieur, M., 1992, J. Fluid Mech., 239, pp. 157–194) which are among the most often employed SGS models for LES, the HPF eddy-viscosity models do need neither van Driest wall damping functions for a correct prediction of the viscous sublayer of wall-bounded turbulent flows nor a dynamic determination of the coefficient. Furthermore, the HPF eddy-viscosity models are formulated locally and three-dimensionally in space. For compressible flows the model is supplemented by a HPF eddy-diffusivity ansatz for the SGS heat flux in the energy equation. Turbulent inflow conditions are generated by a rescaling and recycling technique in which the mean and fluctuating part of the turbulent boundary layer at some distance downstream of inflow is rescaled and reintroduced at the inflow position (Stolz, S. and Adams, N. A., 2003, Phys. Fluids, 15, pp. 2389–2412).

1.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
0027-0644,
93
, pp.
99
164
.
2.
Métais
,
O.
, and
Lesieur
,
M.
, 1992, “
Spectral Large-Eddy Simulations of Isotropic and Stably-Stratified Turbulence
,”
J. Fluid Mech.
0022-1120,
239
, pp.
157
194
.
3.
Van Driest
,
E. R.
, 1956, “
On the Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
0095-9812,
23
, pp.
1007
1011
.
4.
Lilly
,
D.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Model
,”
Phys. Fluids A
0899-8213,
4
, pp.
633
635
.
5.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
6.
Stolz
,
S.
,
Schlatter
,
P.
,
Meyer
,
D.
, and
Kleiser
,
L.
, 2003, “
High-Pass Filtered Eddy-Viscosity Models for LES
,”
Direct and Large-Eddy Simulation
,
V. R.
Friedrich
,
B. J.
Geurts
, and
O.
Métais
, Eds.,
Kluwer
, Dordrecht, pp.
81
88
.
7.
Hughes
,
T. J. R.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
, 2000, “
Large Eddy Simulation and the Variational Multiscale Method
,”
Comput. Visual. Sci.
,
3
, pp.
47
59
.
8.
Vreman
,
A. W.
, 2003, “
The Filtering Analog of The Variational Multiscale Method in Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
15
, pp.
L61
L64
.
9.
Stolz
,
S.
,
Adams
,
N. A.
, and
Kleiser
,
L.
, 2001, “
An Approximate Deconvolution Model for Large-Eddy Simulation With Application to Incompressible Wall-Bounded Flows
,”
Phys. Fluids
1070-6631,
13
, pp.
997
1015
.
10.
Domaradzki
,
J. A.
,
Liu
,
W.
,
Härtel
,
C.
, and
Kleiser
,
L.
, 1994, “
Energy-Transfer in Numerically Simulated Wall-Bounded Turbulent Flows
,”
Phys. Fluids
1070-6631,
6
, pp.
1583
1599
.
11.
Stolz
,
S.
, and
Adams
,
N. A.
, 2003, “
LES of High-Reynolds-Number Supersonic Boundary Layers Using the Approximate Deconvolution Model and a Rescaling and Recycling Technique
,”
Phys. Fluids
1070-6631,
15
, pp.
2389
2412
.
12.
Stolz
,
S.
, and
Adams
,
N. A.
, 1999, “
An Approximate Deconvolution Procedure for Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
11
, pp.
1699
1701
.
13.
Stolz
,
S.
,
Adams
,
N. A.
, and
Kleiser
,
L.
, 2001, “
The Approximate Deconvolution Model for LES of Compressible Flows and its Application to Shock-Turbulent-Boundary-Layer Interaction
,”
Phys. Fluids
1070-6631,
13
, pp.
2985
3001
.
14.
Vreman
,
A. W.
, 1995, “
Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer
,” PhD thesis, University of Twente, the Netherlands.
15.
Stolz
,
S.
,
Adams
,
N. A.
, and
Kleiser
,
L.
, 1999, “
Analysis of Sub-Grid Scales and Sub-Grid Scale Modeling for Shock-Boundary-Layer Interaction
,”
Turbulence and Shear Flow I
,
S.
Banerjee
and
J.
Eaton
, eds.,
Begell House
, New York, pp.
881
886
.
16.
Sandham
,
N. D.
,
Li
,
W.
, and
Yee
,
H. C.
, 2002, “
Entropy Splitting for High-Order Numerical Simulation of Compressible Turbulence
,”
J. Comput. Phys.
0021-9991,
178
, pp.
307
322
.
17.
Carpenter
,
M. H.
,
Gottlieb
,
J.
, and
Gottlieb
,
D.
, 1999, “
A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy
,”
J. Comput. Phys.
0021-9991,
148
, pp.
341
365
.
18.
Harten
,
A.
, 1983, “
On the Symmetric Form of Systems of Conservation Laws With Entropy
,”
J. Comput. Phys.
0021-9991,
49
, pp.
151
164
.
19.
Gerritsen
,
M.
, and
Olsson
,
P.
, 1996, “
Designing an Efficient Solution Strategy for Fluid Flows
,”
J. Comput. Phys.
0021-9991,
129
, pp.
245
262
.
20.
Lele
,
S. K.
, 1992, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
0021-9991,
103
, pp.
16
42
.
21.
Maeder
,
T.
,
Adams
,
N. A.
, and
Kleiser
,
L.
, 2001, “
Direct Simulation of Turbulent Supersonic Boundary Layers by an Extended Temporal Approach
,”
J. Fluid Mech.
0022-1120,
429
, pp.
187
216
.
22.
Williamson
,
J. H.
, 1980, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
0021-9991,
35
, pp.
48
56
.
23.
Fernholz
,
H. H.
, and
Finley
,
P. J.
, 1977, “
A Critical Compilation of Compressible Turbulent Boundary Layer Data
,” Tech. Rep. AGARDograph No. 223, AGARD, Neuilly sur Seine, France.
24.
Fernholz
,
H. H.
, and
Finley
,
P. J.
, 1980, “
A Critical Commentary on Mean Flow Data for Two-Dimensional Compressible Turbulent Boundary Layers
,” Tech. Rep. AGARDograph No. 253, AGARD, Neuilly sur Seine, France.
25.
Fernholz
,
H. H.
, and
Finley
,
P. J.
, 1981, “
A Further Compilation of Compressible Boundary Layer Data With a Survey of Turbulence Data
,” Tech. Rep. AGARDograph No. 263, AGARD, Neuilly sur Seine, France.
26.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially Developing Boundary Layer Simulations
,”
J. Comput. Phys.
0021-9991,
140
, pp.
233
258
.
27.
Adams
,
N. A.
, 1998, “
Direct Numerical Simulation of Turbulent Compression Corner Flow
,”
Theor. Comput. Fluid Dyn.
0935-4964,
12
, pp.
109
129
.
28.
Coles
,
D.
, 1954, “
Measurement of Turbulent Friction on a Smooth Flat Plate in Supersonic Flow
,”
J. Aeronaut. Sci.
0095-9812,
7
, pp.
433
448
.
29.
Guarini
,
S. E.
,
Moser
,
R. D.
,
Shariff
,
K.
, and
Wray
,
A.
, 2000, “
Direct Numerical Simulation of a Supersonic Turbulent Boundary Layer at Mach 2.5
,”
J. Fluid Mech.
0022-1120,
414
, pp.
1
33
.
30.
Bradshaw
,
P.
, 1977, “
Compressible Turbulent Shear Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
33
54
.
31.
Fernholz
,
H. H.
, 1971, “
Ein Halbempirisches Gesetz für die Wandreibung in Kompressiblen Turbulenten Grenzschichten bei Isothermer and Adiabater Wand
,”
Z. Angew. Math. Mech.
0044-2267,
51
, pp.
T148
T149
.
32.
Smits
,
A. J.
, and
Dussauge
,
J.-P.
, 1996,
Turbulent Shear Layers in Supersonic Flow.
AIP Press
, Woodbury, New York.
33.
Spalart
,
P. R.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer up to Reθ=1410
,”
J. Fluid Mech.
0022-1120,
187
, pp.
61
98
.
34.
Morkovin
,
M. V.
, 1962, “
Effects of Compressibility on Turbulent Flows
,”
Mécanique de la Turbulence
,
A.
Favre
, ed.,
CNRS
, Paris, pp.
367
380
.
35.
Spina
,
E. F.
,
Smits
,
A. J.
, and
Robinson
,
S. K.
, 1994, “
The Physics of Supersonic Turbulent Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
287
319
.
You do not currently have access to this content.