We present a streamline-upwind–Petrov-Galerkin (SUPG) finite element level set method that may be implemented into commercial computational fluid dynamics (CFD) software, both finite element (FE) and finite volume (FV) based, to solve problems involving incompressible, two-phase flows with moving interfaces. The method can be used on both structured and unstructured grids. Two formulations are given. The first considers the coupled motion of the two phases and is implemented within the framework of the commercial CFD code CFX-4. The second can be applied for those gas-liquid flows for which effects of the gaseous phase on the motion of the liquid phase are negligible; consequently, the gaseous phase is removed from consideration. This level set formulation is implemented in the commercial CFD code FIDAP. The resulting level set formulations are tested and validated on sample problems involving two-phase flows with density ratios of the order of 103 and viscosity ratios as high as 1.6×105.

1.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
, 2001, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991
169
, pp.
708
759
.
2.
Hou
,
T. Y.
,
Lowengrub
,
J. S.
, and
Shelley
,
M. J.
, 2001, “
Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials
,”
J. Comput. Phys.
0021-9991
169
, pp.
302
323
.
3.
Jacqmin
,
D.
, 1999, “
Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
0021-9991
155
, pp.
96
127
.
4.
Jamet
,
D.
,
Lebaigue
,
O.
,
Coutris
,
N.
, and
Delhaye
,
J. M.
, 2001, “
The Second Gradient Method for the Direct Numerical Simulation of Liquid-Vapor Flows With Phase Change
,”
J. Comput. Phys.
0021-9991
169
, pp.
624
651
.
5.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid Method (VOF) for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991
39
, pp.
201
225
.
6.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991
100
, pp.
335
354
.
7.
Sethian
,
J. A.
, 1999,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
, Cambridge, England.
8.
Osher
,
S.
, and
Fedkiw
,
R. P.
, 2001, “
Level Set Methods: an Overview and Some Recent Results
,”
J. Comput. Phys.
0021-9991
169
, pp.
463
502
.
9.
CFX-4
, 2000, AEA Technology, Harwell, Oxfordshire, OX11 0RA, UK.
10.
FIDAP 8.60
, 2001, Fluid Dynamics Analysis Package, Fluent Inc., 10 Cavendish Court, Lebanon, NH, 03766, USA.
11.
Rider
,
W. J.
, and
Kothe
,
D. B.
, 1998, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
0021-9991
141
, pp.
112
152
.
12.
Barth
,
T. J.
, and
Sethian
,
J. A.
, 1998, “
Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains
,”
J. Comput. Phys.
0021-9991
145
, pp.
1
40
.
13.
Sussman
,
M.
,
Smereka
,
P.
,
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991
114
, pp.
146
159
.
14.
Sussman
,
M.
, and
Smereka
,
P.
, 1997, “
Axisymmetric Free Boundary Problems
,”
J. Fluid Mech.
0022-1120
341
, pp.
269
294
.
15.
Sussman
,
M.
, and
Fatemi
,
E.
, 1999, “
An Efficient Interface-Preserving Level Set Redistancing Algorithm and its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput. (USA)
1064-8275
20
, pp.
1165
1191
.
16.
Sussman
,
M.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M. L.
, 1999, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991
148
, pp.
81
124
.
17.
Yu
,
J.-D.
,
Sakai
,
S.
, and
Sethian
,
J. A.
, 2003, “
A Coupled Level Set Projection Method Applied to Ink Jet Simulation
,”
Interfaces Free Boundaries
1463-9963
5
, pp.
459
482
.
18.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
, 1996, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
0021-9991
124
, pp.
449
464
.
19.
Tornberg
,
A.-K.
, and
Engquist
,
B.
, 2000, “
A Finite Element Based Level-Set Method for Multiphase Flow Applications
,”
Comput. Visual Sci.
3
, pp.
93
101
.
20.
Sussman
,
M.
, and
Puckett
,
E. G.
, 2000, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
0021-9991
162
, pp.
301
337
.
21.
Mulder
,
W.
,
Osher
,
S.
, and
Sethian
,
J. A.
, 1992, “
Computing Interface Motion in Compressible Gas Dynamics
,”
J. Comput. Phys.
0021-9991
100
, pp.
209
228
.
22.
Shepel
,
S. V.
, 2002, “
Numerical Simulation of Filling and Solidification of Permanent Mold Castings
,” Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
23.
Hetu
,
J.-F.
, and
Ilinca
,
F.
, 1999, “
A Finite Element Method for Casting Simulations
,”
Numer. Heat Transfer, Part A
1040-7782
36
, pp.
657
679
.
24.
Pillapakkam
,
S. B.
, and
Singh
,
P.
, 2001, “
A Level-Set Method for Computing Solutions to Viscoelastic Two-Phase Flow
,”
J. Comput. Phys.
0021-9991
174
, pp.
552
578
.
25.
Chessa
,
J.
, and
Belytschko
,
T.
, 2003, “
An Enriched Finite Element Method and Level Sets for Axisymmetric Two-Phase Flow with Surface Tension
,”
Int. J. Numer. Methods Eng.
0029-5981
58
, pp.
2041
2064
.
26.
Dussan
,
V. E. B.
, 1979, “
On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines
,”
Annu. Rev. Fluid Mech.
0066-4189
11
, pp.
371
400
.
27.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation
,”
AIAA J.
0001-1452
21
, pp.
1527
1532
.
28.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
29.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
, 1999, “
The Fast Construction of Extension Velocities in Level Set Methods
,”
J. Comput. Phys.
0021-9991
148
, pp.
2
22
.
30.
Sussman
,
M.
, 2003, “
A Second Order Coupled Level Set and Volume-of-Fluid Method for Computing Growth and Collapse of Vapor Bubbles
,”
J. Comput. Phys.
0021-9991
187
, pp.
110
136
.
31.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Balestra
,
M.
, 1986, “
A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Flow Problem Accomodating Equal-Order Interpolations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
59
, pp.
85
99
.
32.
Martin
,
J. C.
, and
Moyce
,
W. J.
, 1952, “
An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London
0962-8428
244
, pp.
312
324
.
33.
Munz
,
C.-D.
, and
Maschek
,
W.
, 1992, “
Comparison of Results of Two-Phase Fluid Dynamics Codes and Sloshing Experiments
,” Technical Report No. KfK 5091, Kernforschungszentrum Karlsruhe Gmbh, Karlsruhe, Germany.
34.
Meier
,
M.
, 1999, “
Numerical and Experimental Study of Large Steam-Air Bubbles Injected in a Water Pool
,” Ph.D. thesis No. 13091, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
35.
Bhaga
,
D.
, and
Weber
,
M. E.
, 1981, “
Bubbles in Viscous Liquids: Shapes, Wakes, and Velocities
,”
J. Fluid Mech.
0022-1120
105
, pp.
61
85
.
36.
Ginzburg
,
I.
, and
Wittum
,
G.
, 2001, “
Two-Phase Flows on Interface Refined Grids Modeled With VOF, Staggered Finite Volumes, and Spline Interpolants
,”
J. Comput. Phys.
0021-9991
166
, pp.
302
335
.
37.
Koh
,
C. J.
, and
Leal
,
L. G.
, 1990, “
An Experimental Investigation on the Stability of Viscous Drops Translating Through a Quiescent Fluid
,”
Phys. Fluids A
0899-8213
2
(
12
), pp.
2103
2109
.
38.
Tomiyama
,
A.
,
Sou
,
A.
,
Zun
,
I.
,
Sakaguchi
,
T.
, 1994, “
Three-Dimensional Detailed Numerical Simulation of Bubbly Upflow in a Vertical Square Duct
,”
Proc. German-Japanese Symp. on Multi-Phase Flow
, Karlsruhe, Germany,
U.
Müller
,
T.
Saito
, and
K.
Rsut
, eds.,
Kernforschungszentrum
, pp.
487
497
.
You do not currently have access to this content.