Current suggestions for estimating the numerical uncertainty in solutions by the Large-Eddy Simulation (LES) methodology require either a posteriori input or reflect global assessments. In most practical applications, this approach is rather costly for the user and especially time consuming due to the CPU effort needed to reach the statistical steady state. Herein, we demonstrate two alternate a priori graphical exercises. An evaluation of the numerical uncertainty uses the turbulent quantities given by the area under the wave number spectra profiles. These profiles are easily constructed along any grid line in the flow domain prior to the collection of the turbulent statistics. One exercise involves a completion of the spectrum profile beyond the cutoff wave number to the inverse of Kolmorgorov’s length scale by a model of isotropic turbulence. The other extends Richardson Extrapolation acting on multiple solutions. Sample test cases of both LES solutions and direct numerical simulations as well as published experimental data show excellent agreement between the integrated matched spectra and the respective turbulent statistics. Thus, the resultant uncertainties themselves provide a useful measure of accumulated statistical error in the resolved turbulent properties.

1.
Ghosal
,
S.
, 1995, “
Analysis of Discretization Errors in LES
,”
Annual Research Briefs
, Center for Turbulence Research,
Stanford University
, pp.
3
24
.
2.
Meyers
,
J.
,
Geurts
,
B. J.
, and
Baelmans
,
M.
, 2003, “
Database Analysis of Errors in Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
15
, pp.
2740
2755
.
3.
Rogallo
,
R. S.
, and
Moin
,
P.
, 1984, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
16
, pp.
99
137
.
4.
Leonard
,
A.
, 1974, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys.
0065-2687,
18A
, pp.
237
248
.
5.
Love
,
M. D.
, and
Leslie
,
D. C.
, 1979, “
Studies of Subgrid Scale Modeling with Classical Closures and Burgers Equation
,”
Turbulent Shear Flows I
,
Springer-Verlag
, Berlin, pp.
352
369
.
6.
Lund
,
T. S.
, 1997, “
On the Use of Discrete Filters for Large-Eddy Simulation
,”
Annual Research Briefs
, Center for Turbulence Research,
Stanford University
, pp.
83
95
.
7.
Gullbrand
,
J.
, 2002, “
Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow Using Three-Dimensional Explicit Filtering
,”
Annual Research Briefs
, Center for Turbulence Research,
Stanford University
, pp.
167
178
.
8.
Antonopoulos-Domis
,
M.
, 1981, “
Large-Eddy Simulation of a Passive Scalar in Isotropic Turbulence
,”
J. Fluid Mech.
0022-1120,
104
, pp.
55
79
.
9.
Chow
,
F. K.
, and
Moin
,
P.
, 2003, “
A Further Study of Numerical Errors in Large-Eddy Simulations
,”
J. Comput. Phys.
0021-9991,
184
, pp.
366
380
.
10.
Roache
,
P. J.
, 1994, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
J. Fluids Eng.
0098-2202,
148
, pp.
322
340
.
11.
Mehta
,
U. B.
, 1991, “
Some Aspects of Uncertainty in Computational Fluid Dynamics Results
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
538
543
.
12.
Celik
,
I.
,
Chen
,
C. J.
,
Roache
,
P. J.
, and
Scheuerer
,
G.
, 1993,
Symposium on Quantification of Uncertainty in Computational Fluids Dynamic
, FED Vol.
158
,
ASME Fluids Engineering Division Summer Meeting
, Washington, DC, 20–24 June.
13.
Deardoff
,
J. W.
, 1970, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number
,”
J. Fluid Mech.
0022-1120,
41
, pp.
453
480
.
14.
Jordan
,
S. A.
, 1999, “
A Large-Eddy Simulation Methodology in Generalized Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
148
, pp.
322
340
.
15.
Thompson
,
J. F.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
, 1985,
Numerical Grid Generation
,
Elsevier Science
, New York.
16.
Jordan
,
S. A.
, 2003, “
Resolving Turbulent Wakes
,”
J. Fluids Eng.
0098-2202,
125
, pp.
823
834
.
17.
Driscoll
,
R. J.
, and
Kennedy
,
L. A.
, 1983, “
A Model for the Turbulent Energy Spectrum
,”
Phys. Fluids
0031-9171,
26
, pp.
1228
1233
.
18.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
, 1999, “
Detached-Eddy Simulation Past a Circular Cylinder
,”
Flow, Turbul. Combust.
1386-6184,
63
, pp.
293
313
.
19.
Comte-Bellot
,
G.
, and
Corrin
,
S.
, 1971, “
Space Eulerian Time Correlation of Full- and Narrow-Band Velocity Signals in Grid-Generated, ‘Isotropic’ Turbulence
,”
J. Fluid Mech.
0022-1120,
48
, pp.
273
337
.
20.
Geurts
,
B. J.
, and
Frohlich
,
J.
, 2002, “
A Framework for Predicting Accuracy Limitations in Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
14
, pp.
L41
L44
.
21.
Mansour
,
N. N.
,
Moin
,
P.
,
Reynolds
,
W. C.
, and
Ferizer
,
J. H.
, 1979, “
Improved Methods for Large-Eddy Simulation of Turbulence
,”
Turbulent Shear Flows I
,
Springer-Verlag
, Berlin, pp.
188
199
.
22.
Ferziger
,
J. H.
, 1977, “
Large Eddy Simulation of Turbulent Flows
,”
AIAA J.
0001-1452,
15
, pp.
1261
1267
.
23.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 1996, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
9
, pp.
1416
1429
.
24.
Chasnov
,
J. R.
, 1991, “
Simulation of the Kolmorgorov Inertial Subrange Using an Improved Subgrid Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
188
199
.
25.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
, 1987, “
Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
26.
Poimelli
,
U.
,
Ferziger
,
J. H.
, and
Moin
,
P.
, 1987, “
Models For Large Eddy Simulations of Turbulent Channel Flows Including Transpiration
,” Report TF-32,
Stanford University
.
27.
Jordan
,
S. A.
, 2001, “
Dynamic Subgrid-Scale Modeling for Large-Eddy Simulations in Complex Topologies
,”
J. Fluids Eng.
0098-2202,
123
, pp.
1
10
.
28.
Ong
,
L.
, and
Wallace
,
J.
, 1996, “
The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder
,”
Exp. Fluids
0723-4864,
333
, pp.
375
402
.
29.
Beaudan
,
P.
, and
Moin
,
P.
, 1994, “
Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number
,” Report No. TF-62,
Stanford, University
, Stanford, CA.
You do not currently have access to this content.