Measurements with both two-dimensional (2D) two-component and three-component stereo particle image velocimetry (PIV) and computation in 2D and three-dimensional (3D) using Reynolds stress turbulence model with commercial code are carried out in a square duct backward-facing step (BFS) in a turbulent water flow at three Reynolds numbers of about 12,000, 21,000, and 55,000 based on the step height h and the inlet streamwise maximum mean velocity U0. The reattachment locations measured at a distance of Δy=0.0322h from the wall are 5.3h, 5.6h, and 5.7h, respectively. The inlet flow condition is fully developed duct flow before the step change with the expansion ratio of 1.2. PIV results show that the mean velocity, root mean square (rms) velocity profiles, and Reynolds shear stress profiles in all the experimental flow cases are almost identical in the separated shear-layer region when they are nondimensionalized by U0. The sidewall effect of the square BFS flow is analyzed by comparing the experimental statistics with direct numerical simulation (DNS) and Reynolds stress model (RSM) data. For this purpose, the simulation is carried out for both 2D BFS and for square BFS having the same geometry in the 3D case as the experimental case at the lowest Reynolds number. A clear difference is observed in rms and Reynolds shear stress profiles between square BFS experimental results and DNS results in 2D channel in the spanwise direction. The spanwise rms velocity difference is about 30%, with experimental tests showing higher values than DNS, while in contrast, turbulence intensities in streamwise and vertical directions show slightly lower values than DNS. However, with the modeling, the turbulence statistical differences between 2D and 3D RSM cases are very modest. The square BFS indicates 0.5h1.5h smaller reattachment distances than the reattachment lengths of 2D flow cases.

1.
de Brederode
,
V.
, and
Bradshaw
,
P.
, 1972, “
Three-Dimensional Flow in Nominally Two-Dimensional Separation Bubbles
,”
Imperial College of Science and Technology
, Technical Aero Report No. 72-19.
2.
Papadopoulos
,
G.
, and
Ötugen
,
M. V.
, 1995, “
Separation and Reattaching Flow Structure in a Suddenly Expanding Rectangular Duct
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
17
23
.
3.
Berbee
,
J. G.
, and
Ellzey
,
J. L.
, 1989, “
The Effect of Aspect Ratio on the Flow Over a Rearward-Facing Step
,”
Exp. Fluids
0723-4864,
7
, pp.
447
452
.
4.
Adams
,
E. W.
, and
Johnston
,
J. P.
, 1988, “
Effects of the Separating Shear Layer on the Reattachment Flow Structure, Part 1: Pressure and Turbulence Quantities
,”
Exp. Fluids
0723-4864,
6
, pp.
400
408
.
5.
Adams
,
E. W.
, and
Johnston
,
J. P.
, 1988, “
Effects of the Separating Shear Layer on the Reattachment Flow Structure, Part 2: Reattachment Length and Wall Shear Stress
,”
Exp. Fluids
0723-4864,
6
, pp.
493
499
.
6.
Driver
,
D. M.
, and
Seegmiller
,
H. L.
, 1985, “
Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow
,”
AIAA J.
0001-1452,
23
, pp.
163
171
.
7.
Jovic
,
S.
, and
Driver
,
D. M.
, 1994, “
Backward-Facing Step Measurements at Low Reynolds Number, Reh=5000
,”
NASA
, Technical Report No. TM-108807.
8.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, 1997, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
330
, pp.
349
374
.
9.
Jovic
,
S.
, 1996, “
An Experimental Study of a Separated∕Reattached Flow Behind a Backward-Facing Step, Reh=37,000
,”
NASA
, Technical Report No. TM-110384.
10.
Kostas
,
J.
,
Soria
,
J.
, and
Chong
,
M. S.
, 2002, “
Particle Image Velocimetry Measurements of a Backward-Facing Step Flow
,”
Exp. Fluids
0723-4864,
33
, pp.
838
853
.
11.
Scarano
,
F.
, and
Riethmuller
,
M. L.
, 1999, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
0723-4864,
26
, pp.
513
523
.
12.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
127
, pp.
473
496
.
13.
So
,
R. M. C.
, and
Yuan
,
S. P.
, 1998, “
Near-Wall Two-Equation and Reynolds-Stress Modeling of Backstep Flow
,”
Int. J. Eng. Sci.
0020-7225,
36
, pp.
283
298
.
14.
Bischof
,
C. H.
,
Bücker
,
H. M.
, and
Rasch
,
A.
, 2004, “
Sensitivity Analysis of Turbulence Models Using Automatic Differentiation
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
, pp.
510
522
.
15.
Wang
,
B.
,
Zhang
,
H.-Q.
, and
Wang
,
X.-L.
, 2004, “
Large Eddy Simulation of SGS Turbulent Kinetic Energy and SGS Turbulent Dissipation in a Backward-Facing Step Turbulent Flow
,”
Chin. Phys. Lett.
0256-307X,
21
, pp.
1773
1776
.
16.
Delcayre
,
F.
, 1999, “
Etude Par Simulation Des Grandes échelles d’un écoulement Décollé; la Marche Descendante
,” Ph.D. thesis, Grenoble.
17.
Dubief
,
Y.
, and
Delcayre
,
F.
, 2000, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
1468-5248,
1
, pp.
1
22
.
18.
Shih
,
C.
, and
Ho
,
C.-M.
, 1994, “
Three-Dimensional Recirculation Flow in a Backward-Facing Step
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
228
232
.
19.
Piirto
,
M.
,
Saarenrinne
,
P.
,
Eloranta
,
H.
, and
Karvinen
,
R.
, 2003, “
Measuring Turbulence Energy With PIV in a Backward-Facing Step Flow
,”
Exp. Fluids
0723-4864,
35
, pp.
219
236
.
20.
Fureby
,
C.
, 1999, “
Large Eddy Simulation of Rearward-Facing Step Flow
,”
AIAA J.
0001-1452,
37
, pp.
1401
1410
.
21.
Kaltenbach
,
H.-J.
, and
Janke
,
G.
, 2000, “
Direct Numerical Simulation of Flow Separation Behind a Swept, Rearward-Facing Step at ReH=3000
,”
Phys. Fluids
1070-6631,
12
, pp.
2320
2337
.
22.
Bärwolff
,
G.
,
Wengle
,
H.
, and
Jeggle
,
H.
, 1996, “
Direct Numerical Simulation of Transitional Backward-Facing Step Flow Manipulated By Oscillating Blowing∕Suction
,”
Engineering Turbulence Modelling and Experiments 3
,
W.
Rodi
, and
G.
Bergeles
, eds.,
Elsevier
, Amsterdam, pp.
219
228
.
23.
Chiang
,
T. P.
, and
Sheu
,
T. W. S.
, 1999, “
Time Evolution of Laminar Flow Over a Three-Dimensional Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
721
745
.
24.
Eaton
,
J. K.
, and
Johnston
,
J. P.
, 1981, “
A Review of Research on Subsonic Turbulent Flow Reattachment
,”
AIAA J.
0001-1452,
19
, pp.
1093
1100
.
25.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
, pp.
943
945
.
26.
Parneix
,
S.
,
Laurence
,
D.
, and
Durpin
,
P. A.
, 1998, “
A Procedure for Using DNS Databases
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
40
47
.
27.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, England
.
28.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 1994, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flow. I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
139
151
.
29.
Piirto
,
M.
,
Eloranta
,
H.
,
Saarenrinne
,
P.
, and
Karvinen
,
R.
, 2005, “
A Comparative Study of Five Different PIV Interrogation Algorithms
,”
Exp. Fluids
0723-4864,
39
, pp.
573
590
.
30.
Westerweel
,
J.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997, “
The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings
,”
Exp. Fluids
0723-4864,
23
, pp.
20
28
.
31.
Forliti
,
D. J.
,
Strykowski
,
P. J.
, and
Depatin
,
K.
, 2000, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
28
, pp.
436
447
.
32.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z.-C.
, 1997, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1441
1454
.
33.
Fluent Inc., 2005, FLUENT 6.2 user’s guide, Lebanon.
34.
Gibson
,
M. M.
, and
Launder
,
B. E.
, 1978, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120,
86
, pp.
491
511
.
35.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
36.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
0001-1452,
26
, pp.
641
648
.
37.
Spalding
,
D. B.
, 1961, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
0021-8936,
28
, pp.
455
458
.
38.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2001, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect To Reynolds Number Dependency
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
382
393
.
39.
Gavrilakis
,
S.
, 1992, “
Numerical Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct
,”
J. Fluid Mech.
0022-1120,
244
, pp.
101
129
.
40.
Fouras
,
A.
, and
Soria
,
J.
, 1998, “
Accuracy of Out-Of-Plane Vorticity Measurements Derived From In-Plane Velocity Field Data
,”
Exp. Fluids
0723-4864,
25
, pp.
409
430
.
41.
Piirto
,
M.
,
Ihalainen
,
H.
,
Eloranta
,
H.
, and
Saarenrinne
,
P.
, 2001, “
2D Spectral and Turbulence Length Scale Estimation With PIV
,”
J. Vision
1534-7362,
4
, pp.
39
49
.
You do not currently have access to this content.