The flow past a rotating cylinder placed within a uniform stream is investigated at Reynolds numbers ranging from 8500 to 17,000 to 34,000. The dimensionless rotation rate α (ratio of the cylinder peripheral speed to the free-stream velocity) varies from 0 to 7. The experimental investigation is based on laser-Doppler anemometry measurements and particle-image velocimetry (PIV) within a water channel. The analysis of the experimental results mainly concerns the location of the separation points as defined by various criteria. It is found that the criterion suggested by Moore, Rott and Sears (MRS) is met in the case of the downstream-moving walls. Moreover, this study shows that sufficient information was obtained to confirm that the MRS criterion is still valid even in the case of the upstream-moving walls. This is confirmed by the behavior of the vertical velocity component educed from the averaged two-dimensional flow field obtained by PIV measurements.

1.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
, 1991, “
Rotary Oscillation Control of Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
224
, pp.
77
90
.
2.
Modi
,
V. P
,
Mokhtarian
,
F.
, and
Fernando
,
M. S. U. K.
, 1991, “
Moving Surface Boundary Layer Control as Applied to Two-Dimensional Airfoils
,”
J. Aircr.
0021-8669,
28
, pp.
104
112
.
3.
Moore
,
F. K.
, 1958, “
On the Separation of the Unsteady Laminar Boundary Layers
,”
Boundary Layer Research
,
H. G.
Görtler
, ed.,
Springer
,
Berlin
, pp.
296
310
.
4.
Rott
,
N.
, 1956, “
Unsteady Viscous Flow in the Vicinity of a Stagnation Point
,”
Q. Appl. Math.
0033-569X,
13
, pp.
444
451
.
5.
Sears
,
W. R.
, 1956, “
Some Recent Development in Airfoil Theory
,”
J. Aeronaut. Sci.
0095-9812,
23
, pp.
490
499
.
6.
Ludwig
,
G. R.
, 1964, “
An Experimental Investigation of Laminar Separation From a Moving Wall
,” AIAA Paper No. 64-6, Aerosp. Sci. Meeting, New York, January 20–22.
7.
Koromilas
,
C. A.
, and
Telionis
,
D. P.
, 1980, “
Unsteady Laminar Separation: An Experimental Study
,”
J. Fluid Mech.
0022-1120,
97
, pp.
347
384
.
8.
Tsahalis
,
D. T.
, and
Telionis
,
D. P.
, 1973, “
The Effect of Blowing on Laminar Separation
,”
J. Appl. Mech.
0021-8936,
40
, pp.
1133
1134
.
9.
Telionis
,
D. P.
, and
Werle
,
M. J.
, 1973, “
Boundary Layer Separation From Downstream Moving Boundaries
,”
J. Appl. Mech.
0021-8936,
40
, pp.
369
374
.
10.
Peller
,
H.
, 1986, “
Thermofluiddynamic Experiments With a Heated and Rotating Circular Cylinder in Cross Flow
,”
Exp. Fluids
0723-4864,
4
, pp.
223
231
.
11.
Labraga
,
L.
,
Bourabaa
,
N.
, and
Berkah
,
T.
, 2002, “
Wall Shear Stress From a Rotating Cylinder in Cross Flow Using the Electrochemical Technique
,”
Exp. Fluids
0723-4864,
33
, pp.
488
496
.
12.
Chew
,
Y. T.
,
Cheng
,
M.
, and
Luo
,
S. C.
, 1995, “
A Numerical Study of Flow Past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme
,”
J. Fluid Mech.
0022-1120,
299
, pp.
35
71
.
13.
Inoue
,
O.
, 1981, “
MRS Criterion for Flow Separation Over Moving Walls
,”
AIAA J.
0001-1452,
19
(
9
), pp.
1108
1111
.
14.
Tsahalis
,
D. T
, 1977, “
Laminar Boundary-Layer Separation From an Upstream-Moving Wall
,”
AIAA J.
0001-1452,
15
(
4
), pp.
561
566
.
15.
Diaz
,
F.
,
Gavaldà
,
J.
,
Kawall
,
J. G.
,
Keffer
,
J. F.
, and
Girald
,
F.
, 1983, “
Vortex Shedding From a Spinning Cylinder
,”
Phys. Fluids
0031-9171,
26
(
12
), pp.
3454
3460
.
16.
Hu
,
G.
,
Sun
,
D.
,
Yin
,
X.
, and
Tong
,
B.
, 1996, “
Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder
,”
Phys. Fluids
1070-6631,
8
(
7
), pp.
1972
1974
.
17.
Kang
,
S.
,
Choi
,
H.
, and
Lee
,
S.
, 1999, “
Laminar Flow Past a Rotating Circular Cylinder
,”
Phys. Fluids
1070-6631,
11
(
11
), pp.
3312
3321
.
18.
Oosthuizen
,
P. H.
, and
Madan
,
S.
, 1970, “
Combined Convective Heat Transfer From Horizontal Cylinders in Air
,”
ASME J. Heat Transfer
0022-1481
83
, pp.
194
196
.
19.
Morgan
,
V. T.
, 1975, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
Adv. Heat Transfer
0065-2717,
11
, pp.
199
264
.
20.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
, 1992, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
Exp. Fluids
0723-4864,
13
, pp.
105
116
.
21.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
1
54
.
22.
Coutanceau
,
M.
, and
Menard
,
C.
, 1985, “
Influence of Rotation on the Near-Wake Development Behind an Impulsively Started Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
158
, pp.
399
446
.
23.
Sung
,
H. J.
,
Chun
,
C. K.
, and
Hyun
,
J. M.
, 1995, “
Experimental Study of Uniform-Shear Flow Past a Rotating Cylinder
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
62
67
.
24.
Mittal
,
S.
, and
Kumar
,
B.
, 2003, “
Flow Past Rotating Cylinder
,”
J. Fluid Mech.
0022-1120,
476
, pp.
303
334
.
25.
Badr
,
H. M.
,
Coutanceau
,
M.
,
Dennis
,
S. C. R.
, and
Menard
,
C.
, 1990, “
Unsteady Flow Past a Rotating Circular Cylinder at Reynolds Numbers 103 and 104
,”
J. Fluid Mech.
0022-1120,
220
, pp.
459
484
.
You do not currently have access to this content.