The cavitation behavior of a four-blade rocket engine turbopump inducer was simulated by the computational fluid dynamics (CFD) code FINE∕TURBO™. The code was modified to take into account a cavitation model based on a homogeneous approach of cavitation, coupled with a barotropic state law for the liquid∕vapor mixture. In the present study, the numerical model of unsteady cavitation was applied to a four-blade cascade drawn from the inducer geometry. Unsteady behavior of cavitation sheets attached to the inducer blade suction side depends on the flow rate and cavitation number σ. Numerical simulations of the transient evolution of cavitation on the blade cascade were performed for the nominal flow rate and different cavitation numbers, taking into account simultaneously the four blade-to-blade channels. Depending on the flow parameters, steady or unsteady behaviors spontaneously take place. In unsteady cases, subsynchronous or supersynchronous regimes were observed. Some mechanisms responsible for the development of these instabilities are proposed and discussed.

1.
Kim
,
J. H.
, and
Acosta
,
A. J.
, 1975, “
Unsteady Flow in Cavitating Turbopumps
,”
ASME J. Fluids Eng.
0098-2202,
96
(
3
), pp.
412
418
.
2.
Brennen
,
C. E.
, and
Acosta
,
A. J.
, 1976, “
The Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
0098-2202,
98
(
2
), pp.
182
191
.
3.
Brennen
,
C. E.
,
Meissner
,
C.
,
Lo
,
E. Y.
, and
Hoffmanns
,
G. S.
, 1982,
ASME J. Fluids Eng.
0098-2202,
104
(
4
), pp.
428
433
.
4.
de Bernardi
,
J.
,
Joussellin
,
F.
, and
Von Kaenel
,
A.
, 1993, “
Experimental Analysis of Instabilities Related to Cavitation in Turbopump Inducer
,”
First International Symposium on Pump Noise and Vibrations
,
Paris, France
, pp.
91
99
.
5.
Goirand
,
B.
,
Mertz
,
A.
,
Joussellin
,
F.
, and
Rebattet
,
C.
, 1992, “
Experimental Investigation of Radial Loads Induced by Partial Cavitation With Liquid Hydrogen Inducer
,”
Third International Conference on Cavitation
,
Cambridge, U.K.
, pp.
263
269
, ImechE Paper No. C453∕056.
6.
Joussellin
,
F.
,
Maitre
,
T.
, and
Morel
,
P.
, 1998, “
3D Cavity Shape in an Inducer; Experimental Investigations and Numerical Predictions
,”
Third International Symposium on Cavitation
,
Grenoble, France
.
7.
Kamijo
,
K.
,
Shimura
,
T.
, and
Watanabe
,
M.
, 1977, “
An Experimental Investigation of Cavitating Inducer Instability
,” ASME Paper No. 77-WA∕FW-14.
8.
Pagnier
,
P.
,
Morel
,
P.
,
Spettel
,
F.
,
Henry
,
C.
, and
Champagne
,
J.-Y.
, 1995, “
Conception and Experimental Study of an Inducer
,” in
Cav’95 International Symposium
,
Deauville, France
.
9.
Tsujimoto
,
Y.
, 2001, “
Simple Rules for Cavitation Instabilities in Turbomachinery
,”
Fourth International Symposium on Cavitation
,
Pasadena, CA
.
10.
Watanabe
,
S.
,
Sato
,
K.
,
Tsujimoto
,
Y.
, and
Kamijo
,
K.
, 1999, “
Analysis of Rotating Cavitation in a Finite Pitch Cascade Using a Closed Cavity Model and a Singularity Method
,”
ASME J. Fluids Eng.
0098-2202,
121
(
4
), pp.
834
840
.
11.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
, 2000, “
Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
0098-2202,
122
(
1
), pp.
156
163
.
12.
Joussellin
,
F.
,
Courtot
,
Y.
,
Coutier-Delgosha
,
O.
, and
Reboud
,
J. L.
, 2001, “
Cavitating Inducer Instabilities: Experimental Analysis and 2D Numerical Simulation of Unsteady Flow in Blade Cascade
,”
Proceedings of the Fourth International Symposium on Cavitation
,
Pasadena, CA
.
13.
Fortes Patella
,
R.
,
Coutier-Delgosha
,
O.
,
Perrin
,
J.
, and
Reboud
,
J. L.
, 2007, “
A Numerical Model to Predict Unsteady Cavitating Flow Behaviour in Inducer Blade Cascades
,”
ASME J. Fluids Eng.
0098-2202,
129
(
1
), pp.
128
135
.
14.
Coutier-Delgosha
,
O.
,
Courtot
,
Y.
,
Joussellin
,
F.
, and
Reboud
,
J. L.
, 2004, “
Numerical Simulation of the Unsteady Cavitation Behavior of an Inducer Blade Cascade
.”
AIAA J.
0001-1452,
42
(
3
), pp.
560
56
.
15.
Otsuka
,
S.
,
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Furuya
,
O.
, 1996, “
Frequence Dependence of Mass Flow Gain Factor and Cavitation Compliance of Cavitating Inducers
,”
ASME J. Fluids Eng.
0098-2202,
118
(
3
), pp.
400
408
.
16.
Pouffary
,
B.
,
Fortes Patella
,
R.
, and
Reboud
,
J. L.
, 2003, “
Numerical Simulation of Cavitating Flow Around a 2D Hydrofoil: A Barotropic Approach
,”
Fifth International Symposium on Cavitation
,
Osaka, Japan
.
17.
Pouffary
,
B.
, 2004, “
Simulation Numérique d’Écoulements 2D∕3D Cavitants, Stationnaires et Instationnaires: Analyse Spécifique Pour les Turbomachines
,” Ph.D. thesis, Grenoble, France.
18.
Pouffary
,
B.
,
Fortes Patella
,
R.
, and
Reboud
,
J. L.
, 2005, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
Proceedings of FEDSM2005
,
Houston, TX
, Jun. 19–23.
19.
Coutier-Delgosha
,
O.
,
Fortes Patella
,
R.
,
Reboud
,
J. L.
,
Hakimi
,
N.
, and
Hirsch
,
C.
, 2005, “
Numerical Simulation of Cavitating Flow in 2D and 3D Inducer Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
48
(
2
), pp.
135
167
.
20.
Coutier-Delgosha
,
O.
,
Fortes Patella
,
R.
,
Reboud
,
J. L.
,
Hakimi
,
N.
, and
Hirsch
,
C.
, 2005, “
Stability of Preconditioned Navier–Stokes Equations Associated With a Cavitation Model
,”
Comput. Fluids
0045-7930,
34
(
3
), pp.
319
349
.
21.
Hakimi
,
N.
, 1997, “
Preconditioning Methods for Time Dependent Navier–Stokes Equations
,” Ph.D. thesis, Vrije Universiteit Brussels, Belgium.
22.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
23.
Delannoy
,
Y.
, and
Kueny
,
J. L.
, 1990, “
Two Phase Flow Approach in Unsteady Cavitation Modelling
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
98
, pp.
153
158
.
24.
Coutier-Delgosha
,
O.
,
Reboud
,
J.-L.
, and
Delannoy
,
Y.
, 2003, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
,
527
548
.
25.
Lohrberg
,
H.
,
Stoffel
,
B.
,
Fortes-Patella
,
R.
, and
Coutier-Delgosha
,
O.
,
Reboud
,
J.-L.
, 2002, “
Numerical and Experimental Investigation on the Cavitating Flow in a Cascade of Hydrofoils
,”
Exp. Fluids
0723-4864
33∕4
, pp.
578
586
.
26.
Coutier-Delgosha
,
O.
,
Fortes Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
, 2003, “
Experimental and Numerical Studies in a Centrifugal Pump With 2D-Curved Blades in Cavitating Conditions
,”
ASME J. Fluids Eng.
0098-2202,
125
(
6
), pp.
970
978
.
27.
Coutier-Delgosha
,
O.
,
Fortes Patella
,
R.
, and
Reboud
,
J. L.
, 2002, “
Simulation of Unsteady Cavitation With a Two-Equation Turbulence Model Including Compressibility Effects
,”
J. Turbul.
1468-5248,
3
,
058
.
28.
Jameson
,
A.
, 1991, “
Time Dependant Calculations Using Multigrid, With Application to Unsteady Flows Past Airfoils and Wings
,” AIAA Paper No. 91–1596.
29.
Turkel
,
E.
, 1987, “
Preconditioning Methods for Solving the Incompressible and Low Speed Compressible Equations
,”
J. Comput. Phys.
0021-9991
72
, pp.
277
298
.
30.
Choi
,
D.
, and
Merkle
,
C. L.
, 1993, “
The Application of Preconditioning in Viscous Flows
,”
J. Comput. Phys.
0021-9991
105
, pp.
207
223
.
31.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
, 1955, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
0097-6822,
77
(
4
), pp.
455
469
.
32.
Rolland
,
J.
,
Boitel
,
G.
,
Barre
,
S.
,
Goncalves
,
E.
, and
Fortes Patella
,
R.
, 2006, “
Experiments and Modelling of Cavitating Flows in Venturi, Part I: Stable Cavitation
,”
Sixth International Symposium on Cavitation, CAV2006
,
Wageningen, The Netherlands
, Sept.
33.
Gonzalo-Flores
,
N.
,
Rolland
,
J.
,
Goncalves
,
E.
,
Fortes Patella
,
R.
, and
Rebattet
,
C.
, 2006, “
Head Drop of Spatial Turbopump Inducer
,”
Proceedings of CAV 2006 Symposium
,
Wageningen, The Netherlands
, Sept.
You do not currently have access to this content.