The laminarization phenomenon for the flow under the combined effect of strong curvature and rotation is discussed based on numerical predictions of large-eddy simulation (LES). Initially, the laminarization process is presented for the fully developed flow inside a spanwise rotating straight square duct. LES predictions over a wide range of rotation numbers (Ro=05) show that the turbulent kinetic energy decreases monotonically apart from 0.2<Ro<0.5. Subsequently, a spanwise rotating U-duct flow is considered with Ro=±0.2. The interaction of curvature and Coriolis induced secondary flows enhances the turbulence for the negative rotating case, whereas this interaction ensues strong laminarization for the positive rotating case. Finally, the laminarization is presented in the impeller of a typical centrifugal compressor, rotating at a speed of Ω=1862rpm(Ro=0.6). The resulting LES predictions are observed to be better than those of Reynolds-averaged Navier-Stokes (RANS) in the regions where turbulence is significant. However, for the regions dominated by strong laminarization, RANS results are seen to approach those of LES and experiments.

1.
Back
,
L. H.
,
Cuffel
,
R. F.
, and
Massier
,
P. F.
, 1969, “
Laminarization of a Turbulent Boundary Layer in Nozzle Flow-Boundary Layer and Heat Transfer Measurements With Wall Cooling
,” NASA Center, ASME Paper 69-HT-56.
2.
McEligot
,
D. M.
, and
Bankston
,
C. A.
, 1969, “
Numerical Predictions for Circular Tube Laminarization by Heating
,” NASA Center, ASME Paper 69-HT-52.
3.
Kurganov
,
V. A.
, and
Gladuntsov
,
A. I.
, 1977, “
Laminarization of Flow and Heat Transfer Crisis in Pipes Under Conditions of Intense Heating of Turbulent-Flow of Gas Dissociating Endothermally at Wall
,”
High Temp.
0018-151X,
15
(
6
), pp.
1052
1062
.
4.
Kawamura
,
M. H.
, and
Takizuka
,
T.
, 1982, “
Experiment on Laminarization of Strongly Heated Gas-Flow in Vertical Circular Tube
,”
J. Atomic Energy Society of Japan
,
24
(
1
), pp.
60
67
.
5.
Fujii
,
S.
,
Akino
,
N.
,
Hishida
,
M.
,
Kawamura
,
H.
, and
Sanokawa
,
K.
, 1991, “
Numerical-Studies on Laminarization of Heated Turbulent Gas-Flow in Annular Duct
,”
J. Atomic Energy Society of Japan
,
33
(
12
), pp.
1180
1190
.
6.
Torii
,
S.
,
Shimizu
,
A.
,
Hasegawa
,
S.
, and
Higasa
,
M.
, 1990, “
Laminarization of Strongly Heated Gas-Flows in a Circular Tube (Numerical-Analysis by Means of a Modified Kappa-Epsilon Model)
,”
JSME Int. J., Ser. II
0914-8817,
33
(
3
), pp.
538
547
.
7.
Torii
,
S.
,
Shimizu
,
A.
,
Hasegawa
,
S.
, and
Kusama
,
N.
, 1991, “
Laminarization of Strongly Heated Annular Gas Flows
,”
JSME Int. J., Ser. II
0914-8817,
34
(
2
), pp.
157
168
.
8.
Torii
,
S.
, and
Yang
,
W. J.
, 1997, “
Laminarization of Turbulent Gas Flow Inside a Strongly Heated Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
13
), pp.
3105
3117
.
9.
Torii
,
S.
, and
Yang
,
W. J.
, 1999, “
Swirling Effects on Laminarization of Gas Flow in a Strongly Heated Tube
,”
ASME Trans. J. Heat Transfer
0022-1481,
121
(
2
), pp.
307
313
.
10.
Satake
,
S.
,
Kunugi
,
T.
,
Shehata
,
A. M.
, and
McEligot
,
D. M.
, 2000, “
Direct Numerical Simulation for Laminarization of Turbulent Forced Gas Flows in Circular Tubes With Strong Heating
,”
Int. J. Heat Fluid Flow
0142-727X,
21
(
5
), pp.
526
534
.
11.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
Prediction of Laminarization With a 2-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
15
(
2
), pp.
301
314
.
12.
Howard
,
J. H. G.
,
Patankar
,
S. V.
, and
Bordynuik
,
R. M.
, 1980, “
Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models
,”
ASME Trans. J. Fluids Eng.
0098-2202,
102
(
4
), pp.
456
461
.
13.
Naot
,
D.
,
Peled
,
A.
, and
Tanny
,
J.
, 1990, “
Response of Shear Flow Turbulence to Diffusional Electromagnetic Fluctuations
,”
Appl. Math. Model.
0307-904X,
14
(
5
), pp.
226
236
.
14.
Morley
,
N. B.
,
Gaizer
,
A. A.
,
Tillack
,
M. S.
, and
Abdou
,
M. A.
, 1995, “
Initial Liquid Metal Magnetohydrodynamic Thin Film Flow Experiments in the Mcga-Loop Facility at UCLA
,”
Fusion Eng. Des.
0920-3796,
27
, pp.
725
730
.
15.
Kim
,
E.-J.
,
Hahm
,
T. S.
, and
Diamond
,
P. H.
, 2001, “
Eddy Viscosity and Laminarization of Sheared Flow in Three Dimensional Reduced Magnetohydrodynamic Turbulence
,”
Phys. Plasmas
1070-664X,
8
, pp.
3576
3582
.
16.
Beér
,
J. M.
,
Chigier
,
N. A.
,
Davies
,
T. W.
, and
Bassindale
,
K.
, 1971, “
Laminarization of Turbulent Flames in Rotating Environments
,”
Combust. Flame
0010-2180,
16
, pp.
39
45
.
17.
Takagi
,
T.
,
Shin
,
H.-D.
, and
Ishio
,
A.
, 1980, “
Local Laminarization in Turbulent Diffusion Flames
,”
Combust. Flame
0010-2180,
37
, pp.
163
170
.
18.
Zawadzki
,
A.
, and
Jarosinski
,
J.
, 1983, “
Laminarization of Flames in Rotating Flow
,”
Combust. Sci. Technol.
0010-2202,
35
, pp.
1
13
.
19.
Rodi
,
W.
,
Pennell
,
W. T.
, and
Eckert
,
E. R. G.
, 1969, “
Laminarization of Turbulent Flow in a Circular Porous Tube With Uniform Mass Injection Through Tube Wall
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
91
(
11
), p.
67
.
20.
Arnal
,
D.
, and
Bulgubure
,
C.
, 1996, “
Drag Reduction by Boundary Layer Laminarization
,”
Rech. Aerosp.
0034-1223,
3
, pp.
157
165
.
21.
Moin
,
R. D.
, and
Moin
,
P.
, 1987, “
The Effects of Curvature in Wall-Bounded Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
175
, pp.
479
510
.
22.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
JI
,
H.
, and
Launder
,
B. E.
, 1996, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
0889-504X,
118
(
3
), pp.
590
596
.
23.
Lopes
,
A. S.
,
Piomelli
,
U.
, and
Palma
,
J. M. L. M.
, 2006, “
Large-Eddy Simulation of the Flow in an S-Duct
,”
J. Turbul.
1468-5248,
7
(
11
), pp.
1
30
.
24.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Graham
,
A. B.
, and
Thole
,
K. A.
, 2006, “
Experimental Validation of Large Eddy Simulation of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
243
258
.
25.
Laskowski
,
G. M.
, and
Durbin
,
P. A.
, 2007, “
Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Finite Serpentine Passage
,”
Phys. Fluids
1070-6631,
19
(
1
),
015101
.
26.
Hirai
,
S.
,
Takagi
,
T.
, and
Matsumoto
,
M.
, 1986, “
Prediction of the Laminarization Phenomena in Turbulent Swirling Flows
,”
Bull. JSME
0021-3764,
29
(
258
), pp.
4462
4470
.
27.
Nishibori
,
K.
,
Kikuyama
,
K.
, and
Murakami
,
M.
, 1987, “
Laminarization of Turbulent-Flow in the Inlet Region of an Axially Rotating Pipe
,”
JSME Int. J.
0913-185X,
30
(
260
), pp.
255
262
.
28.
Hirai
,
S.
,
Takagi
,
T.
, and
Matsumoto
,
M.
, 1988, “
Predictions of the Laminarization Phenomena in an Axially Rotating Pipe-Flow
,”
ASME Trans. J. Fluids Eng.
0098-2202,
110
(
4
), pp.
424
430
.
29.
Pashtrapanska
,
M.
,
Jovanović
,
J.
,
Lienhart
,
H.
, and
Durst
,
F.
, 2006, “
Turbulence Measurements in a Swirling Pipe Flow
,”
Exp. Fluids
0723-4864,
41
, pp.
813
827
.
30.
Yang
,
Z.
, 2000, “
Large Eddy Simulation of Fully Developed Turbulent Flow in a Rotating Pipe
,”
Int. J. Numer. Methods Fluids
0271-2091,
33
, pp.
681
694
.
31.
Johnston
,
J. P.
,
Hallen
,
R. M.
, and
Lezius
,
R. K.
, 1972, “
Effect of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
56
, pp.
533
557
.
32.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
, 1993, “
Direct Simulations of Low Reynolds-Number Turbulent-Flow in a Rotating Channel
,”
J. Fluid Mech.
0022-1120,
256
, pp.
163
197
.
33.
Macfarlane
,
I.
,
Joubert
,
P. N.
, and
Nickels
,
T. B.
, 1998, “
Secondary Flows and Developing, Turbulent Boundary Layers in a Rotating Duct
,”
J. Fluid Mech.
0022-1120,
373
, pp.
1
32
.
34.
Murata
,
A.
, and
Mochizuki
,
S.
, 1999, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Smooth Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
20
), pp.
3803
3814
.
35.
Pallares
,
J.
, and
Davidson
,
L.
, 2000, “
Large-Eddy Simulations of Turbulent Flow in a Rotating Square Duct
,”
Phys. Fluids
1070-6631,
12
, pp.
2878
2894
.
36.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
1386-6184,
62
(
3
), pp.
183
200
.
37.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
38.
2001, Fluent 6.2 User Guide, Fluent Inc., Lebanon.
39.
Chorin
,
A. J.
, 1968, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
0025-5718,
22
(
104
), pp.
745
762
.
40.
Leonard
,
B. P.
, 1991, “
The Ultimate Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
88
, pp.
17
74
.
41.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1996,
Computational Methods for Fluid Dynamics
,
Springer
,
New York
.
42.
Issa
,
R. I.
, 1986, “
Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
43.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flows
,
Hemisphere
,
Washington, DC
.
44.
Gavralakis
,
S.
, 1992, “
Numerical-Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct
,”
J. Fluid Mech.
0022-1120,
244
, pp.
101
129
.
45.
Guleren
,
K. M.
, 2007, “
Large-Eddy Simulation of Wall-Bounded Flows Subjected to Curvature and Rotation
,” Ph.D. thesis, The University of Manchester, UK 2007, available from http://www.cumhuriyet.edu.tr/~melihguleren/PhDthesis.pdfhttp://www.cumhuriyet.edu.tr/~melihguleren/PhDthesis.pdf.
46.
Guleren
,
K. M.
, and
Turan
,
A.
, 2007, “
Validation of Large-Eddy Simulation of Strongly Curved Stationary and Rotating U-Duct Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
28
(
5
), pp.
909
921
.
47.
Hathaway
,
M. S.
,
Chriss
,
R. M.
,
Wood
,
J. R.
, and
Strazisar
,
A.
, 1993, “
Experimental and Computational Investigation of the NASA Low-Speed Centrifugal Compressor Flow Field
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
527
542
.
48.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
49.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
, pp.
943
945
.
50.
Alvelius
,
K.
, 1999, Ph.D. thesis, Department of Mechanics Royal Insititue of Technology, Stockholm, Sweden.
51.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
52.
Kim
,
W. W.
, and
Menon
,
S.
, 1995, “
A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations
,” Paper No. AIAA-95-035.
53.
Pallares
,
J.
,
Grau
,
F. X.
, and
Davidson
,
L.
, 2005, “
Pressure Drop and Heat Transfer Rates in Forced Convection Rotating Square Duct Flows at High Rotation Rates
,”
Phys. Fluids
1070-6631,
17
(
7
),
075102
.
54.
Prandtl
,
L.
, 1952,
Essentials of Fluid Dynamics
,
Hafner
,
New York
.
55.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972, “
Lectures in Mathematical Models of Turbulence
,”
Academic
,
London
.
56.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Canada, CA.
57.
Daly
,
B. J.
, and
Harlow
,
F. H.
, 1970, “
Transport Equations in Turbulence
,”
Phys. Fluids
0031-9171,
13
, pp.
80
.
You do not currently have access to this content.