Particle collisions with the walls are very important in understanding the fluid-particle behavior near the walls and determining the boundary conditions of the particulate phases in two-fluid models. In this paper, we examine the velocity characteristics of several types of particles near solid walls by applying a resolved discrete particle method (RDPM), which also uses the immersed boundary approach to model the solid particles. We assume that the particles are spherical with an initial velocity that is prescribed. The particles are allowed to traverse part of the viscous fluid until they collide with the solid wall. The collision force on the particle is modeled by a soft-sphere collision scheme with a linear spring-dashpot system. The hydrodynamic force on the particle is solved directly from the RDPM. By following the trajectories of several particles, we investigate the effect of the collision model parameters to the dynamics of particle close to the wall. We report here the rebound velocity of the particle, the coefficient of restitution, and the particle slip velocity at the wall as functions of the collision parameters.

1.
Walton
,
O. R.
, 1992, “
Numerical Simulation of Inelastic, Frictional Particle-Particle Interactions
,”
Particulate Two-Phase Flow, Part I
,
M. C.
Roco
, ed.,
Butterworth-Heinemann
,
Boston
, pp.
884
911
.
2.
Ladd
,
A. J. C.
, 1994, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part I: Theoretical Foundation
,”
J. Fluid Mech.
0022-1120,
271
, pp.
285
310
.
3.
Ladd
,
A. J. C.
, 1994, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part II: Numerical Results
,”
J. Fluid Mech.
0022-1120,
271
, pp.
311
339
.
4.
Glowinski
,
R.
,
Pan
,
T. -W.
,
Hesla
,
T. I.
,
Joseph
,
D. D.
, and
Periaux
,
J.
, 2001, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
363
426
.
5.
Feng
,
Z. -G.
, and
Michaelides
,
E. E.
, 2005, “
Proteus: A Direct Forcing Method in the Simulations of Particulate Flow
,”
J. Comput. Phys.
0021-9991,
202
, pp.
20
51
.
6.
Alder
,
B. J.
, and
Wainwright
,
T. E.
, 1957, “
Phase Transition for a Hard-Sphere System
,”
J. Chem. Phys.
0021-9606,
27
, pp.
1208
1209
.
7.
Hoomans
,
B. P. B.
,
Kuipers
,
J. A. M.
,
Briels
,
W. J.
, and
van Swaaij
,
W. P. M.
, 1996, “
Discrete Particle Simulation of Bubble and Slug Formation in Two-Dimensional Gas-Fluidised Beds: A Hard-Sphere Approach
,”
Chem. Eng. Sci.
0009-2509,
51
, pp.
99
118
.
8.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
, pp.
47
65
.
9.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
, 1993, “
Discrete Particle Simulation of Two Dimensional Fluidized Bed
,”
Powder Technol.
0032-5910,
77
, pp.
79
87
.
10.
Xu
,
B. H.
, and
Yu
,
A. B.
, 1997, “
Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method With Computational Fluid Dynamics
,”
Chem. Eng. Sci.
0009-2509,
52
, pp.
2785
2809
.
11.
Ardekani
,
A. M.
, and
Rangel
,
R. H.
, 2008, “
Numerical Investigation of Particle-Particle and Particle-Wall Collisions in a Viscous Fluid
,”
J. Fluid Mech.
0022-1120,
596
, pp.
437
466
.
12.
Joseph
,
G. G.
,
Zenit
,
R.
,
Hunt
,
M. L.
, and
Rosenwinkel
,
A. M.
, 2001, “
Particle-Wall Collisions in a Viscous Fluid
,”
J. Fluid Mech.
0022-1120,
433
, pp.
329
346
.
13.
Joseph
,
G. G.
, and
Hunt
,
M. L.
, 2004, “
Oblique Particle-Wall collisions in a Viscous Fluid
,”
J. Fluid Mech.
0022-1120,
510
, pp.
71
93
.
14.
Gondret
,
P.
,
Lance
,
M.
, and
Petit
,
L.
, 2002, “
Bouncing Motion of Spherical Particles in Fluids
,”
Phys. Fluids
1070-6631,
14
, pp.
643
652
.
15.
Zhang
,
J.
,
Fan
,
L. -S.
,
Zhu
,
C.
,
Pfeffer
,
R.
, and
Qi
,
D.
, 1999, “
Dynamic Behavior of Collision of Elastic Spheres in Viscous Fluids
,”
Powder Technol.
0032-5910,
106
, pp.
98
109
.
16.
Jenkins
,
J. T.
, and
Louge
,
M. Y.
, 1997, “
On the Flux of Fluctuation Energy in a Collisional Grain Flow at a Flat, Frictional Wall
,”
Phys. Fluids
1070-6631,
10
, pp.
1836
1840
.
17.
Benyahia
,
S.
,
Syamlala
,
M.
, and
O’Brien
,
T. J.
, 2005, “
Evaluation of Boundary Conditions Used to Model Dilute, Turbulent Gas/Solids Flows in a Pipe
,”
Powder Technol.
0032-5910,
156
, pp.
62
72
.
18.
Di Renzo
,
A.
, and
Di Maio
,
F. P.
, 2004, “
Comparison of Contact-Force Models for the Simulation of Collisions in DEM-Based Granular Flow Codes
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
525
541
.
19.
Feng
,
Z. -G.
, and
Michaelides
,
E. E.
, 2004, “
The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid-Particles Interaction Problems
,”
J. Comput. Phys.
0021-9991,
195
, pp.
602
628
.
20.
Feng
,
Z. -G.
, and
Michaelides
,
E. E.
, 2009, “
Heat Transfer in Particulate Flows With Direct Numerical Simulation (DNS)
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
777
786
.
21.
Feng
,
Z. -G.
, and
Michaelides
,
E. E.
, 2009, “
Robust Treatment of No-Slip Boundary Condition and Velocity Updating for the Lattice-Boltzmann Simulation of Particulate Flows
,”
Comput. Fluids
0045-7930,
38
, pp.
370
381
.
22.
Uhlmann
,
M.
, 2005, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
0021-9991,
209
, pp.
448
476
.
23.
Yang
,
X.
,
Zhang
,
X.
,
Li
,
Z.
, and
He
,
G. –W.
, 2009, “
A Smoothing Technique for Discrete Delta Functions With Application to Immersed Boundary Method in Moving Boundary Simulations
,”
J. Comput. Phys.
0021-9991,
228
, pp.
7821
7836
.
24.
Peskin
,
C. S.
, 1977, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
0021-9991,
25
, pp.
220
252
.
25.
Mohd-Yusof
,
J.
, 1997, “
Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries
,” Annual Research Briefs, Center for Turbulence Research, Stanford University.
26.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
27.
Mullier
,
M.
,
Tüzün
,
U.
, and
Walton
,
O. R.
, 1991, “
A Single-Particle Friction Cell for Measuring Contact Frictional Properties of Granular Materials
,”
Powder Technol.
0032-5910,
65
, pp.
61
74
.
28.
Tsuji
,
Y.
,
Morikawa
,
Y.
,
Tanaka
,
T.
,
Nakatsukasa
,
N.
, and
Nakatani
,
N.
, 1987, “
Numerical Simulation of Gas-Solid Two-Phase Flow in a Two-Dimensional Horizontal Channel
,”
Int. J. Multiphase Flow
0301-9322,
13
, pp.
671
684
.
29.
ten Cate
,
A.
,
Nieuwstad
,
C. H.
,
Derksen
,
J. J.
, and
van den Akker
,
H. E. A.
, 2002, “
Particle Imaging Velocimetry Experiments and Lattice-Boltzmann Simulations on a Single Sphere Settling Under Gravity
,”
Phys. Fluids
1070-6631,
14
, pp.
4012
4025
.
You do not currently have access to this content.