Modern designs for centrifugal pumps consider flow unsteadiness as a main concern. The averaged impact of blade to blade structures and impeller-tongue or impeller-diffuser interactions is considered relevant to accurately address the machine performance. In this framework, the search for a comprehensive way to explain unsteady patterns would be particularly desirable. In the present paper, an analysis of the deterministic interaction between the impeller flow and both the inlet and outlet volute tongues in a double suction centrifugal pump is carried out. The zero velocity condition imposed in both tongues gives rise to an interaction that, up to the authors’ knowledge, has not yet been studied for this type of pumps. A well-tested numerical model, developed by the authors for previous studies with the same pump, has been exploited to predict deterministic correlations in the interaction region. Therefore, the main goal of this paper becomes the evaluation of the nonuniformities induced by both the inlet and the outlet tongues over the blade to blade distributions within the impeller. As a consequence, fluctuation levels in the blade loadings, derived from deterministic nonuniformities of the inlet tongue, can be provided in the relative frame of reference. The collected data using the numerical model can be further employed to establish modeling issues for deterministic stresses. Since more and more often, it becomes a widespread practice for pump manufacturers to include the analysis of the unsteady flow patterns in the design process, the availability of methodological tools to characterize pure unsteady terms in the early stages may be extremely useful for designers. Comparison of deterministic fluctuations with unresolved turbulence intensities is also available in this study, showing the importance of unsteady mechanisms in the modeling of pumping turbomachines.

1.
van Esch
,
B. P. M.
, and
Kruyt
,
N. P.
, 2001, “
Hydraulic Performance of a Mixed-Flow Pump: Unsteady Inviscid Computations and Loss Models
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
256
264
.
2.
Badie
,
R.
,
Jonker
,
J. B.
, and
van den Braembussche
,
R. A.
, 1994, “
Finite Element Calculations and Experimental Verification of Unsteady Potential Flow in a Centrifugal Pump
,”
Int. J. Numer. Methods Fluids
0271-2091,
19
, pp.
1083
1102
.
3.
Fortes-Patella
,
R.
,
Longatte
,
F.
,
Kueny
,
J. L.
, and
Croba
,
D.
, 1995, “
Numerical Analysis of Unsteady Flow in a Centrifugal Pump
,”
ASME Fluid Machinery
, FED-
222
, pp.
41
46
.
4.
Croba
,
D.
, and
Kueny
,
J. L.
, 1996, “
Numerical Calculation of 2D, Unsteady Flow in Centrifugal Pumps: Impeller and Volute Interaction
,”
Int. J. Numer. Methods Fluids
0271-2091,
22
, pp.
467
481
.
5.
Shi
,
F.
, and
Tsukamoto
,
H.
, 2001, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
466
474
.
6.
Miner
,
S. M.
, 2000, “
Evaluation of Blade Passage Analysis Using Coarse Grids
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
345
348
.
7.
Ubaldi
,
M.
, 1996, “
An Experimental Investigation of Stator Induced Unsteadiness on Centrifugal Impeller Outflow
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
41
54
.
8.
Arndt
,
N.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
, 1990, “
Experimental Investigation of Rotor-Stator Interaction in a Centrifugal Pump With Several Vaned Diffusers
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
98
108
.
9.
González
,
J.
, and
Santolaria
,
C.
, 2006, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
937
946
.
10.
Lorett
,
J. A.
, and
Gopalakrishnan
,
S.
, 1986, “
Interaction Between Impeller and Volute of Pumps at Off-Design Conditions
,”
ASME J. Fluids Eng.
0098-2202,
108
, pp.
12
18
.
11.
Wang
,
H.
, and
Tsukamoto
,
H.
, 2001, “
Fundamental Analysis on Rotor-Stator Interaction in a Diffuser Pump by Vortex Method
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
737
747
.
12.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
, 2002, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
348
355
.
13.
Aysheshim
,
W.
, and
Stoffel
,
B.
, 2002, “
Rotor-Stator-Interaction and Turbulence in a Centrifugal Pump Stage
,”
Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems
, Lausanne, Switzerland.
14.
Ubaldi
,
M.
,
Zunino
,
P.
, and
Cattanei
,
A.
, 1993, “
A Relative Flow and Turbulence Measurements Downstream of a Backward Centrifugal Impeller
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
543
551
.
15.
González
,
J.
,
Parrondo
,
J.
,
Santolaria
,
C.
, and
Blanco
,
E.
, 2006, “
Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
454
462
.
16.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
, 2008, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
111102
.
17.
Baun
,
D. O.
,
Köstner
,
L.
, and
Flack
,
R. D.
, 2000, “
Effect of Relative Impeller-to-Volute Position on Hydraulic Efficiency and Static Radial Force Distribution in a Circular Volute Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
598
605
.
18.
González
,
J.
,
Fernández Oro
,
J. M.
,
Argüelles Díaz
,
K. M.
, and
Santolaria
,
C.
, 2009, “
Flow Analysis for a Double Suction Centrifugal Machine in the Pump and Turbine Operation Modes
,”
Int. J. Numer. Methods Fluids
0271-2091,
61
, pp.
220
236
.
19.
Kirtley
,
K. R.
, and
Beach
,
T. A.
, 1992, “
Deterministic Blade Row Interactions in a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
304
311
.
20.
Adamczyk
,
J. J.
, 2000, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
189
217
.
21.
Sinha
,
M.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2000, “
Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes—II: Addressing Passage-Averaged and Large-Eddy Simulation Modeling Issues in Turbomachinery Flows
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
108
116
.
22.
Meneveau
,
C.
, and
Katz
,
J.
, 2002, “
A Deterministic Stress Model for Rotor-Stator Interactions in Simulations of Average-Passage Flow
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
550
554
.
23.
Fernández Oro
,
J. M.
,
Argüelles Díaz
,
K. M.
,
Santolaria Morros
,
C.
, and
Blanco Marigorta
,
E.
, 2008, “
Analysis of the Deterministic Unsteady Flow in a Low-Speed Axial Fan With Inlet Guide Vanes
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
031101
.
24.
Krause
,
N.
,
Zähringer
,
K.
, and
Pap
,
E.
, 2005, “
Time-Resolved Particle Imaging Velocimetry for the Investigation of Rotating Stall in a Radial Pump
,”
Exp. Fluids
0723-4864,
39
, pp.
192
201
.
25.
González
,
J.
,
Santolaria
,
C.
,
Castro
,
F.
, and
Parra
,
M. T.
, 2003, “
Numerical Model for the Unsteady Flow Behaviour Inside a Double Suction Pump
,”
ASME
Paper No. FEDSM2003-45396.
26.
Freitas
,
C. J.
, 1993, “
Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
339
340
.
You do not currently have access to this content.