An approximate solution to the Navier–Stokes equations was found for the case describing two-dimensional steady-state laminar flow over an array of porous pipes with high wall Reynolds number. The Navier–Stokes equations in cylindrical coordinates reduced to a fourth-order nonlinear differential equation, which was solved for high wall Reynolds number flows through the porous wall using a zeroth- and first-order singular perturbation method. Our analytic solution for the high wall Reynolds number case is consistent with solutions found from the low Reynolds number case and that found using finite element analysis.
1.
Moussy
, Y.
, and Snider
, A. D.
, 2009, “Laminar Flow Over Pipes With Injection and Suction Through the Porous Wall at Low Wall Reynolds Numbers
,” J. Membr. Sci.
0376-7388, 327
, pp. 104
–107
.2.
Berman
, A. S.
, 1958, “Laminar Flow in an Annulus With Porous Walls
,” J. Appl. Phys.
0021-8979, 29
, pp. 71
–75
.3.
Terrill
, R. M.
, 1967, “Flow Through a Porous Annulus
,” Appl. Sci. Res.
0003-6994, 17
, pp. 204
–222
.4.
Huang
, C. -L.
, 1974, “Applying Quasilinearization to the Problem of Flow Through an Annulus With Porous Walls of Different Permeability
,” Appl. Sci. Res.
0003-6994, 29
, pp. 145
–158
.5.
Devanathan
, R.
, and Raju
, K. K.
, 1971, “Flow of a Power Law Fluid in an Annulus With Porous Walls
,” Rheol. Acta
0035-4511, 10
, pp. 371
–377
.6.
Jankowski
, T. A.
, and Majdalani
, J.
, 2005, “Vortical and Acoustical Mode Coupling Inside a Porous Tube With Uniform Wall Suction
,” J. Acoust. Soc. Am.
0001-4966, 117
(6
), pp. 3448
–3458
.7.
Yuan
, S. W.
, and Finkelstein
, A. B.
, 1956, “Laminar Pipe Flow With Injection and Suction Through a Porous Wall
,” Trans. ASME
0097-6822, 78
, pp. 719
–724
.8.
Baker
, R. W.
, 2002, “Future Directions of Membrane Gas Separation Technology
,” Ind. Eng. Chem. Res.
0888-5885, 41
, pp. 1393
–1411
.9.
Haas
, P.
, 2007, “Simulation d’un Generateur d’Hydrogene par Dissociation de Vapeur d’Eau a 2500 K—Project ‘Clean Hydrogen’
,” Activities de Recherché 2005–2007
, EIG, Geneva.10.
Cerri
, G.
, Giovannelli
, A.
, Battisti
, L.
, and Fedrizzi
, R.
, 2007, “Advances in Effusive Cooling Techniques of Gas Turbines
,” Appl. Therm. Eng.
1359-4311, 27
, pp. 692
–698
.11.
Hazen
, D. C.
, 1980, “Boundary Layer Control
,” Illustrated Experiments in Fluid Mechanics: The NCFMF Book of Film Notes
, Encyclopaedia Britannica Education Corp.
, Chicago, IL
, pp. 89
–96
.12.
Moussy
, Y.
, 2000, “Bioartificial Kidney. I. Theoretical Analysis of Convective Flow in Hollow Fiber Modules: Application to a Bioartificial Hemofilter
,” Biotechnol. Bioeng.
0006-3592, 68
(2
), pp. 142
–152
.13.
Waterland
, L. R.
, Robertson
, C. R.
, and Michaels
, A. S.
, 1975, “Enzymatic Catalysis Using Asymmetric Hollow Fiber Membranes
,” Chem. Eng. Commun.
0098-6445, 2
, pp. 37
–47
.14.
Moussy
, Y.
, 2003, “Convective Flow Through a Hollow Fiber Bioartificial Liver
,” Artif. Organs
0160-564X, 27
(11
), pp. 1041
–1049
.15.
Berman
, A. S.
, 1953, “Laminar Flow in Channels With Porous Walls
,” J. Appl. Phys.
0021-8979, 24
(9
), pp. 1232
–1235
.16.
Robertson
, J. A.
, and Crowe
, C. T.
, 1985, Engineering Fluid Mechanics
, 3rd ed., Houghton Mifflin Company
, Boston, MA
, Chap. 12.17.
Ma
, R. P.
, Gooding
, C. H.
, and Alexander
, W. K.
, 1985, “A Dynamic Model for Low-Pressure Hollow-Fiber Ultrafiltration
,” AIChE J.
0001-1541, 31
(10
), pp. 1728
–1732
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.