Effective slip lengths for pressure-driven oscillatory flow through a parallel-plate channel with boundary slip are deduced using a semi-analytic method of eigenfunction expansions and point matching. The channel walls are each a superhydrophobic surface micropatterned with no-shear alternating with no-slip stripes, which are aligned either parallel or normal to the flow. The slip lengths are complex quantities that are functions of the oscillation frequency, the channel height, and the no-shear area fraction of the wall. The dependence of the complex nature of the slip length on the oscillation frequency is investigated in particular.

1.
Philip
,
J. R.
, 1972, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
0044-2275,
23
, pp.
353
372
.
2.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
E.
,
Bocquet
,
L.
, and
Barrat
,
J. -L.
, 2004, “
Dynamics of Simple Liquids at Heterogeneous Surface: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. Phys. J. E
1292-8941,
15
, pp.
427
438
.
3.
Ng
,
C. O.
, and
Wang
,
C. Y.
, 2009, “
Stokes Shear Flow Over a Grating: Implications for Superhydrophobic Slip
,”
Phys. Fluids
1070-6631,
21
, pp.
013602
.
4.
Navier
,
C. L. M. H.
, 1823, “
Mémoire sur les Lois du Mouvement des Fluides
,”
Memoires de l’Academie Royale des Sciences de l’Institut de France
,
VI
, pp.
389
440
.
5.
Yang
,
J.
, and
Kwok
,
D. Y.
, 2003, “
Effect of Liquid Slip in Electrokinetic Parallel-Plate Microchannel Flow
,”
J. Colloid Interface Sci.
0021-9797,
260
, pp.
225
233
.
6.
Khaled
,
A. -R. A.
, and
Vafai
,
K.
, 2004, “
The Effect of the Slip Condition on Stokes and Couette Flows due to an Oscillating Wall: Exact Solutions
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
795
809
.
7.
Wu
,
Y. H.
,
Wiwatanapataphee
,
B.
, and
Hu
,
M.
, 2008, “
Pressure-Driven Transient Flows of Newtonian Fluids Through Microtubes With Slip Boundary
,”
Physica A
0378-4371,
387
, pp.
5979
5990
.
8.
Matthews
,
M. T.
, and
Hill
,
J. M.
, 2009, “
On Three Simple Experiments to Determine Slip Lengths
,”
Microfluid. Nanofluid.
1613-4982,
6
, pp.
611
619
.
9.
Willmott
,
G. R.
, and
Tallon
,
J. L.
, 2007, “
Measurement of Newtonian Fluid Slip Using a Torsional Ultrasonic Oscillator
,”
Phys. Rev. E
1063-651X,
76
, pp.
066306
.
10.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Morgan
,
H.
, and
Castellanos
,
A.
, 2000, “
Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. I. Experimental Measurements
,”
Phys. Rev. E
1063-651X,
61
(
4
), pp.
4011
4018
.
11.
Marcos
,
C. Y.
,
Wong
,
T. N.
, and
Ooi
,
K. T.
, 2004, “
Dynamic Aspects of Electroosmotic Flow in Rectangular Microchannels
,”
Int. J. Eng. Sci.
0020-7225,
42
, pp.
1459
1481
.
12.
Huang
,
H. F.
, and
Lai
,
C. L.
, 2006, “
Enhancement of Mass Transport and Separation of Species by Oscillatory Electroosmotic Flows
,”
Proc. R. Soc. London, Ser. A
,
462
, pp.
2017
2038
.
13.
Chakraborty
,
S.
, 2007, “
Towards a Generalized Representation of Surface Effects on Pressure-Driven Liquid Flow in Microchannels
,”
Appl. Phys. Lett.
0003-6951,
90
, pp.
034108
.
14.
Chakraborty
,
S.
,
Das
,
T.
, and
Chattoraj
,
S.
, 2007, “
A Generalized Model for Probing Frictional Characteristics of Pressure-Driven Liquid Microflows
,”
J. Appl. Phys.
0021-8979,
102
, pp.
104907
.
15.
Karakare
,
S.
,
Kar
,
A.
,
Kumar
,
A.
, and
Chakraborty
,
S.
, 2010, “
Patterning Nanoscale Flow Vortices in Nanochannels With Patterned Substrates
,”
Phys. Rev. E
1063-651X,
81
, pp.
016324
.
16.
Ng
,
C. O.
, and
Wang
,
C. Y.
, 2010, “
Stokes Flow Through a Periodically Grooved Tube
,”
ASME J. Fluids Eng.
0098-2202,
132
, pp.
101204
.
You do not currently have access to this content.