Effective slip lengths for pressure-driven oscillatory flow through a parallel-plate channel with boundary slip are deduced using a semi-analytic method of eigenfunction expansions and point matching. The channel walls are each a superhydrophobic surface micropatterned with no-shear alternating with no-slip stripes, which are aligned either parallel or normal to the flow. The slip lengths are complex quantities that are functions of the oscillation frequency, the channel height, and the no-shear area fraction of the wall. The dependence of the complex nature of the slip length on the oscillation frequency is investigated in particular.
1.
Philip
, J. R.
, 1972, “Flows Satisfying Mixed No-Slip and No-Shear Conditions
,” Z. Angew. Math. Phys.
0044-2275, 23
, pp. 353
–372
.2.
Cottin-Bizonne
, C.
, Barentin
, C.
, Charlaix
, E.
, Bocquet
, L.
, and Barrat
, J. -L.
, 2004, “Dynamics of Simple Liquids at Heterogeneous Surface: Molecular-Dynamics Simulations and Hydrodynamic Description
,” Eur. Phys. J. E
1292-8941, 15
, pp. 427
–438
.3.
Ng
, C. O.
, and Wang
, C. Y.
, 2009, “Stokes Shear Flow Over a Grating: Implications for Superhydrophobic Slip
,” Phys. Fluids
1070-6631, 21
, pp. 013602
.4.
Navier
, C. L. M. H.
, 1823, “Mémoire sur les Lois du Mouvement des Fluides
,” Memoires de l’Academie Royale des Sciences de l’Institut de France
, VI
, pp. 389
–440
.5.
Yang
, J.
, and Kwok
, D. Y.
, 2003, “Effect of Liquid Slip in Electrokinetic Parallel-Plate Microchannel Flow
,” J. Colloid Interface Sci.
0021-9797, 260
, pp. 225
–233
.6.
Khaled
, A. -R. A.
, and Vafai
, K.
, 2004, “The Effect of the Slip Condition on Stokes and Couette Flows due to an Oscillating Wall: Exact Solutions
,” Int. J. Non-Linear Mech.
0020-7462, 39
, pp. 795
–809
.7.
Wu
, Y. H.
, Wiwatanapataphee
, B.
, and Hu
, M.
, 2008, “Pressure-Driven Transient Flows of Newtonian Fluids Through Microtubes With Slip Boundary
,” Physica A
0378-4371, 387
, pp. 5979
–5990
.8.
Matthews
, M. T.
, and Hill
, J. M.
, 2009, “On Three Simple Experiments to Determine Slip Lengths
,” Microfluid. Nanofluid.
1613-4982, 6
, pp. 611
–619
.9.
Willmott
, G. R.
, and Tallon
, J. L.
, 2007, “Measurement of Newtonian Fluid Slip Using a Torsional Ultrasonic Oscillator
,” Phys. Rev. E
1063-651X, 76
, pp. 066306
.10.
Green
, N. G.
, Ramos
, A.
, Gonzalez
, A.
, Morgan
, H.
, and Castellanos
, A.
, 2000, “Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. I. Experimental Measurements
,” Phys. Rev. E
1063-651X, 61
(4
), pp. 4011
–4018
.11.
Marcos
, C. Y.
, Wong
, T. N.
, and Ooi
, K. T.
, 2004, “Dynamic Aspects of Electroosmotic Flow in Rectangular Microchannels
,” Int. J. Eng. Sci.
0020-7225, 42
, pp. 1459
–1481
.12.
Huang
, H. F.
, and Lai
, C. L.
, 2006, “Enhancement of Mass Transport and Separation of Species by Oscillatory Electroosmotic Flows
,” Proc. R. Soc. London, Ser. A
, 462
, pp. 2017
–2038
.13.
Chakraborty
, S.
, 2007, “Towards a Generalized Representation of Surface Effects on Pressure-Driven Liquid Flow in Microchannels
,” Appl. Phys. Lett.
0003-6951, 90
, pp. 034108
.14.
Chakraborty
, S.
, Das
, T.
, and Chattoraj
, S.
, 2007, “A Generalized Model for Probing Frictional Characteristics of Pressure-Driven Liquid Microflows
,” J. Appl. Phys.
0021-8979, 102
, pp. 104907
.15.
Karakare
, S.
, Kar
, A.
, Kumar
, A.
, and Chakraborty
, S.
, 2010, “Patterning Nanoscale Flow Vortices in Nanochannels With Patterned Substrates
,” Phys. Rev. E
1063-651X, 81
, pp. 016324
.16.
Ng
, C. O.
, and Wang
, C. Y.
, 2010, “Stokes Flow Through a Periodically Grooved Tube
,” ASME J. Fluids Eng.
0098-2202, 132
, pp. 101204
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.