This paper introduces an approach to study a valve's internal fluid dynamics. During operation, the flow causes forces on the spool. These forces must be correctly balanced. Since these forces cannot be measured, a three-dimensional (3D) computational fluid dynamic (CFD) modeling approach is needed. A case study has been undertaken to verify the approach on a two-way pressure compensated flow control valve. Since forces vary during operation, the analysis must be transient. From the initial zero spool position, the flow goes through the valve causing a spool shift inside the valve's housing until the spool stops at its final position. Forces depend on the spring reaction, the inlet pressure force, the pressure force of the fluid inside the spool, and the spring holder volumes, and the balance of forces influences the outlet flow rate at the final spool position. First, the initial case geometry was modeled, prototyped, and tested, and this geometry was studied to verify the model accuracy compared to experimental data. The comparison shows good agreement with a maximum error of 3%. With the same approach, several other geometries were designed, but only the best geometry was prototyped and tested. The model was adopted to make several analyses of velocity contouring, streamlines trends, and pressure distribution in the fluid volume. The modeled and tested results achieved the expected performance confirming the effectiveness of the methodology.

References

1.
Senatore, A., Buono, D., Frosina, E., Pavanetto, M., Costin, I. J., and
Olivetti
,
M.
,
2014
, “
Improving the Position Control Performance of a Proportional Spool Valve, Using a 3D CFD Modeling
,” International Fluid Power Exposition IFPE, Las Vegas, NV,
29
(
2
), pp.
1
11
.
2.
Ivantysynova
,
M.
, and
Ivatysyn
,
J.
,
2001
,
Hydrostatic Pumps and Motors
,
Akademic Books International
,
New Delhi, India
.
3.
Fitch
,
E. C.
, and
Homg
,
I. T.
,
2004
,
Hydraulic Component Design and Selection
,
Bardyne
,
Stillwater, OK
.
4.
Akers
,
A.
,
Gassman
,
M.
, and
Smith
,
R.
,
2006
,
Hydraulic Power System Analysis
,
CRC Press
,
Boca Raton, FL
.
5.
Weaver
,
D. S.
,
Adubi
,
F. A.
, and
Kouwen
,
N.
,
1978
, “
Flow Induced Vibrations of a Hydraulic Valve and Their Elimination
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
239
245
.
6.
Plau-Salvador
,
G.
,
Gonzalez-Altozano
,
P.
, and
Arviza-Valverde
,
J.
,
2008
, “
Three-Dimensional Modeling and Geometrical Influence on the Hydraulic Performance of a Control Valve
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
0111021
.
7.
Sibilla
,
S.
, and
Gallati
,
M.
,
2008
, “
Hydrodynamic Characterization of a Nozzle Check Valve by Numerical Simulation
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121101
.
8.
Ramesh
,
M. D.
,
Tan
,
Y. A.
, and
Lan
,
X.
,
2005
, “
Optimization of a Hydraulic Valve Design Using CFD Analysis
,”
SAE
Paper No. 2005-01-3633.
9.
Yang
,
R.
,
2005
, “
Predicting Hydraulic Valve Pressure Drop Using CFD
,”
SAE
Paper No. 2005-01-3635.
10.
Miller
,
R.
,
Fuji
,
Y.
,
McCallum
,
J.
,
Strumolo
,
G.
,
Tober
,
W.
, and
Pritts
,
C.
,
1999
, “
CFD Simulation of Steady-State Flow Forces on Spool-Type Hydraulic Valves
,”
SAE
Paper No. 1999-01-1058.
11.
Roemer
,
D. B.
,
Johansen
,
P.
,
Pedersen
,
H. C.
, and
Andersen
,
T. O.
,
2015
, “
Modeling of Dynamic Fluid Forces in Fast Switching Valves
,”
ASME
Paper No. FPMC2015-9594, pp. V001T01A049.
12.
Amirante
,
R.
,
Moscatelli
,
P. G.
, and
Catalano
,
L. A.
,
2007
, “
Evaluation of the Flow Forces on a Direct (Single Stage) Proportional Valve by Means of a Computational Fluid Dynamic Analysis
,”
Energy Convers. Manage.
,
48
(
3
), pp.
942
953
.
13.
Amirante
,
R.
,
Catalano
,
L. A.
, and
Tamburrano
,
P.
,
2014
, “
The Importance of a Full 3D Fluid Dynamic Analysis to Evaluate the Flow Forces in a Hydraulic Directional Proportional Valve
,”
Eng. Comput.
,
31
(
5
), pp.
898
922
.
14.
Lee
,
G. S.
,
Sung
,
H. J.
, and
Kim
,
H. C.
,
2013
, “
Multiphysics Analysis of a Linear Control Solenoid Valve
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011104
.
15.
Lee
,
G. S.
,
Sung
,
H. J.
,
Kim
,
H. C.
, and
Lee
,
H. W.
,
2010
, “
Flow Force Analysis of a Variable Force Solenoid Valve for Automatic Transmissions
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
031103
.
16.
Lisowski
,
E.
,
Czyzycki
,
W.
, and
Rajda
,
J.
,
2013
, “
Three Dimensional CFD Analysis and Experimental Test of Flow Force Acting on the Spool of Solenoid Operated Directional Control Valve
,”
Energy Convers. Manage.
,
70
, pp.
220
229
.
17.
Amirante
,
R.
,
Del Vescovo
,
G.
, and
Lippolis
,
A.
,
2006
, “
Flow Forces Analysis of an Open Center Hydraulic Directional Control Valve Sliding Spool
,”
Energy Convers. Manage.
,”
47
(
1
), pp.
114
131
.
18.
Amirante
,
R.
,
Catalano
,
L. A.
,
Tamburrano
,
P.
, and
Poloni
,
L. A.
,
2014
, “
Fluid-Dynamic Design Optimization of Hydraulic Proportional Directional Valves
,”
Eng. Optim.
,
46
(
10
), pp.
1295
1314
.
19.
Manring
,
N. D.
,
2004
, “
Modeling Spool-Valve Flow Force
,”
ASME
Paper No. IMECE2004-59038.
20.
Manring
,
N. D.
, and
Zhang
,
S.
,
2011
, “
Pressure Transient Flow Forces for Hydraulic Spool Valves
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
3
), p.
034501
.
21.
Gamboa
,
A. R.
,
Morris
,
C. J.
, and
Forster
,
F. K.
,
2004
, “
Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
339
346
.
22.
Rannow
,
M. B.
, and
Li
,
P. Y.
,
2012
, “
Soft Switching Approach to Reducing Transition Losses in an On/Off Hydraulic Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
6
), p.
064501
.
23.
Senatore
,
A.
,
Buono
,
D.
,
Frosina
,
F.
,
Arnone
,
L.
,
Santato
,
L.
,
Monterosso
,
F.
, and
Olivetti
,
M.
,
2013
, “
A Tridimensional CFD Analysis of the Lubrication Circuit of a Non-Road Application Diesel Engine
,”
SAE
Paper No. 2013-24-0130.
24.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Olivetti
,
M.
,
2014
, “
A Tridimensional CFD Analysis of the Oil Pump of a High Performance Motorbike Engine
,”
SAE
Paper No. 2014-01-1712.
25.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.
26.
Ding
,
H.
,
Lu
,
X. J.
, and
Jiang
,
B.
,
2012
, “
A CFD Model for Orbital Gerotor Motor
,” IOP Conference Series Earth and Environmental Science,
15
(
6
), p.
062006
.
27.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
28.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
29.
Zhang
,
D.
,
Perng
,
C. Y.
, and
Laverty
,
M.
,
2006
, “
Gerotor Oil Pump Performance and Flow/Pressure Ripple Study
,”
SAE
Technical Paper No. 2006-01-0359.
30.
Simerics
,
2016
, “
Pumplinx® User Manual
,”
Simerics, Inc.
,
Seattle, WA
, http://www.simerics.com
31.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Olivetti
,
M.
,
2014
, “
A Tridimensional CFD Analysis of the Oil Pump of an High Performance Engine
,”
SAE
Paper No. 2014-01-1712.
32.
Schleihs
,
C.
,
Viennet
,
E.
,
Deeken
,
M.
,
Ding
,
H.
,
Xia
,
Y.
,
Lowry
,
S.
, and
Murrenhoff
,
H.
,
2014
, “
3D-CFD Simulation of an Axial Piston Displacement Unit
,”
IFK—The 9th International Fluid Power Conference
,
Aachen
,
Germany
, March 24–26.
33.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
34.
Blackburn
,
J. F.
,
Reethof
,
G.
, and
Shearer
,
J. L.
,
1960
,
Fluid Power Control
,
MIT Press
,
Cambridge, MA
.
35.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
36.
Jiang
,
Y.
,
Furmanczyk
,
M.
,
Lowry
,
S.
,
Zhang
,
D.
, and
Perng
,
C. Y.
,
2008
, “
A Three-Dimensional Design Tool for Crescent Oil Pumps
,”
SAE
Technical Paper No. 2008-01-0003.
37.
Buono
,
D.
,
Senatore
,
A.
,
Prati
,
M.
, and
Manganelli
,
M.
,
2012
, “
Analysis of the Cooling Plant of a High Performance Motorbike Engine
,”
SAE
Technical Paper No. 2012-01-0354.
38.
Jiang
,
Y.
, and
Perng
,
C.
,
1997
, “
An Efficient 3D Transient Computational Model for Vane Oil Pump and Gerotor Oil Pump Simulations
,”
SAE
Technical Paper No. 970841.
39.
Wang
,
D.
,
Ding
,
H.
,
Jiang
,
Y.
, and
Xiang
,
X.
,
2012
, “
Numerical Modeling of Vane Oil Pump With Variable Displacement
,”
SAE
Technical Paper No. 2012-01-0637.
40.
Ding
,
H.
,
Lu
,
X. J.
, and
Jiang
,
B.
,
2012
, “
A CFD Model for Orbital Gerotor Motor
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
6
), p.
062006
.
41.
Ding
,
H.
,
Visser
,
F. C.
, and
Jiang
,
Y.
,
2012
, “
A Practical Approach to Speed up NPSHR Prediction of Centrifugal Pumps Using CFD Cavitation Model
,”
ASME
Paper No. FEDSM2012-72282.
42.
Hsieh
,
C. F.
,
2012
, “
Fluid and Dynamics Analyses of a Gerotor Pump Using Various Span Angle Designs
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121003
.
43.
Hsieh
,
C. F.
,
2015
, “
Flow Characteristics of Gerotor Pumps With Novel Variable Clearance Designs
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041107
.
44.
Hsieh
,
C. F.
,
2015
, “
A New Curve for Application to the Rotor Profile of Rotary Lobe Pumps
,”
Mech. Mach. Theory
,
87
, pp.
70
81
.
45.
Hsieh
,
C. F.
,
2015
, “
Flow Characteristics of Roots Pumps With Multistage Designs by CFD Investigation
,”
Mech. Ind.
,
16
(
6
), pp.
601-1
601-11
.
46.
Hsieh
,
C. F.
, and
Zhou
,
Q. J.
,
2015
, “
Fluid Analysis of Cylindrical and Screw Type Roots Vacuum Pumps
,”
Vacuum
,
121
, pp.
274
282
.
47.
Hsieh
,
C. F.
, and
Deng
,
Y. C.
,
2015
, “
A Design Method for Improving the Flow Characteristics of a Multistage Roots Pumps
,”
Vacuum
,
121
, pp.
217
222
.
48.
Senatore
,
A.
,
Cardone
,
M.
,
Buono
,
D.
, and
Dominici
,
A.
,
2007
, “
Fluid-Dynamic Analysis of a High Performance Engine Lubricant Circuit
,”
SAE
Technical Paper No. 2007-01-1963.
49.
Frosina
,
E.
,
Buono
,
D.
,
Senatore
,
A.
, and
Costin
,
I. J.
,
2016
, “
A Simulation Methodology Applied on Hydraulic Valves for High Fluxes
,”
International Review on Modelling and Simulations IREMOS
,
9
(
3
), pp.
217
226
.
50.
Rane
,
S.
,
Kovacevic
,
A.
,
Stosic
,
N.
, and
Kethidi
,
M.
,
2014
, “
Deforming Grid Generation and CFD Analysis of Variable Geometry Screw Compressors
,”
Comput. Fluids
,
99
, pp.
124
141
.
51.
Kovacevic
,
A.
,
Rane
,
S.
,
Stosic
,
N.
,
Jiang
,
Y.
,
Lowry
,
S.
, and
Furmanczyk
,
M.
,
2014
, “
Influence of Approaches in CFD Solvers on Performance Prediction in Screw Compressors
,”
22nd International Compressor Engineering Conference
, Paper No. 1124, pp. 1–10.
52.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2016
, “
A Mathematical Model to Analyze the Torque Caused by Fluid-Solid Interaction on a Hydraulic Valve
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061103
.
You do not currently have access to this content.